Posts

A city park with trees

Urban Forest Wood-An Innovative Look at Recycling

What happens when urban trees reach their end of life?

Urban trees are one of those remarkable stories that largely flies under the radar. We appreciate how a large canopy can shield us from the intense summer sun or help keep us dry during an unexpected downpour, but most of the time, we take them for granted. We shouldn’t.

According to the Food and Agricultural Organization of the United Nations, urban trees offer a wealth of benefits. Did you know that a mature tree can absorb up to 150 kg of CO2 per year? Aside from sequestering carbon and creating biodiversity, trees help filter pollutants and fine particulates. They also reduce energy requirements for air conditioning and heating when strategically placed.

Research has found that trees aid city dwellers’ physical and mental health and their presence even boosts real estate value. But for urban trees, the story hasn’t always had a happy ending. At the end of life, too often, they have ended up in the waste stream, chipped or burnt, a low repayment for many decades of civic service. The rise of the urban wood movement, however, offers a more promising path.

The sustainability case for upcycling harvested urban wood is compelling. Approximately 3.8 billion board feet of urban wood harvested annually from U.S. cities could be processed into lumber – not counting fire salvage or orchard rescue trees. Utilizing just 10% of that urban wood harvest currently chipped or left to rot would have an equivalent impact on removing 732,000 cars from the street.

The urban wood movement has been growing in recent decades as people have increasingly recognized the value of harvested city trees that had long been underutilized. One of those many stories is told by Jennifer Alger, Director of the Urban Wood Network Western Region, a not-for-profit organization.

She grew up, she said, riding in her dad’s truck as he scoured neighborhoods looking for trees that needed to be taken down. He had been a contract logger by summer and a burl buyer for a firearms manufacturer in winter.

But when the logging business bottomed in the early 1980s, “I spent my childhood in a vehicle with Dad buying these random dead or dying trees from people’s houses,” she recalled. And so he was doing urban lumber before the term ‘urban lumber’ was even coined. At that time, they were cutting for firewood and cellophane wrapping bundles of it for retailers.

Her father recognized the value of timber from the wood world, and it pained him to be cutting perfectly good lengths of material into firewood.  “Why are we cutting these logs into firewood?”, he asked Jennifer, “These logs are gorgeous”.

They began setting aside the best logs and stockpiled them. Finally, they bought their first portable band sawmill in the 1990s, allowing them to mill lumber. Similar stories are told around the country by other companies and participants who recognize the value of harvesting urban wood.

Like others in the urban wood recovery business, Jennifer found a knowledge void regarding its potential value. With that thought in mind, she began networking informally in the early 2000s with the help of CalFire and the United States Forest Service to reach out to arborists and other stakeholders about more sustainable outcomes for urban trees. “We were importing all these hardwoods from either the East Coast or from overseas and here in California, we were spending hours on chipping them, burning, or landfilling – all of these scenarios,” she recalled.

One of the myths that needed to be overcome was that urban trees would be too expensive to mill because of embedded steel objects.” Everybody told me that it costs too much to mill these urban trees because they have nails in them, and so it’s just going to be too costly.” She responded that they were already milling urban trees at her company, and with the value of a blade only $17 or $20, “not that big of a deal.”

In 2016, Urban, Salvaged, & Reclaimed Woods Inc., a West Coast non-profit network was incorporated. In networking with other groups around the country, however, group members discovered that different regions had slightly different perspectives about urban wood. For example, some regional networks included reclaimed lumber from deconstruction, while others included only urban trees.

“The urban wood movement is big and it’s catching on worldwide,” Jennifer said. “But we recognized that we were fragmented.” That fragmentation was standing in the way of building a stronger industry. Collectively, the urban wood communities recognized the need to rebrand, as well as to create standards and certification programs that would help build consumer trust and shield customers from poor quality suppliers.

After much discussion with each of the networks around the country, it was determined that we would unite under the Urban Wood Network with the previous West Coast group becoming the Urban Wood Network Western Region. As a result of that collaboration, urban wood can be described as:

“Any wood that was not harvested for its timber value and was diverted from or removed from the waste-stream and developed or redeveloped into a product. Urban wood can come from three sources: Deconstruction, fresh-cut urban trees, & salvaged wood.”

The group is working towards several initiatives to increase the professionalism of the industry, including the establishment of lumber grades specific to urban timber and chain of custody certification program.

Jennifer is currently working with an expert team of developers and customer experience specialists on the build-out of AncesTREE™ an Inventory Management System and enterprise application that will allow users to easily adhere to the industry standards, track the chain-of-custody, manage their inventory, and generally better manage and grow their urban lumber businesses.

An integrated approach is increasingly being sought, involving cities, municipalities, and large corporate or educational campuses. Attention to pruning and tree care with eventual salvage in mind can boost the marketable value of timber.

The establishment of urban forest management plans and policies can make an important difference for the industry going forward. The establishment of policies will make the urban wood industry less vulnerable to the loss of key urban wood supporters in key decision-making roles.

There are several forces at play that are helping drive the urban wood movement. On one hand, there are increasing restrictions regarding the landfilling of wood waste. On the other hand, people recognize the substantial benefits of using urban wood. With its beautifully unique appearance, it creates one-of-a-kind home products, while supporting local businesses. Using local urban wood also is a celebration of local history, while playing a part in diverting waste and sequestering carbon.

These days, many individuals and organizations are helping to script a more sustainable end of life scenario for urban trees through solid wood recovery. “By networking together, we can build awareness that brings these trees back into the social and economic lives of the communities they came from in the form of lumber, slabs, flooring, siding, furniture, art, architecture and other value-added wood products,” the Urban Wood Network states at its website.

For her part, Jennifer believes that the groundwork the Urban Wood Network is creating today will set the stage for the growth of the urban wood movement and a more sustainable outcome for city trees. Through its focus on education, standards, and promotional assistance, she sees a bright future. “We expect in the next two to five years an absolute explosion of the urban network and its membership,” she concluded.

Picture of BioChar

The Benefits of Biochar-Another Way to Win with Wood

Oregon Department of Forestry, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

Finding profitable markets for residual wood material is an ongoing challenge for many forest products companies. Forest thinnings, logging slash, as well as wood products milling, and recycling fiber are all regularly generated. Markets such as biomass, bedding, landscaping mulch, pulp mills, OSB plants, and others are well established, but the low value of fiber means that it is not economically viable to ship considerable distances.

Biochar production has often been looked at as a potentially exciting opportunity for such material yet demand for biochar has been slow to materialize. Change may soon be on the horizon, however, as one biochar producer has recently secured the first carbon credits for biochar in the United States.

What is a Carbon Credit?

A carbon credit, also referred to as a carbon offset or a carbon offset credit, is a generic term for any tradable certificate or permit representing the right to emit a metric ton of carbon dioxide or the equivalent amount of different greenhouse gases.

A company purchases carbon credits to offset its own greenhouse gas emissions. In the recently announced case, the biochar producer sells the biochar to farmers, who apply it to their soil.

As such, carbon is sequestered underground rather than returning to the atmosphere, creating a carbon sink that has now been recognized by a carbon credit certification group. Companies purchasing biochar carbon credits help improve the economics of biochar for producers and consumers of the product.

What is Biochar and it’s Benefits?

Biochar can be described as the solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment in a process called pyrolysis. That low oxygen environment results in the creation of charcoal rather than merely residual ash.

USDA describes the benefits of biochar as “incredible—improved soil health, enhanced soil water holding capacity, increased plant growth and vigor, cleaner air quality, and perhaps most importantly… the ability to sequester carbon forever.”

Biochar improves soil fertility in two ways. The first and primary advantage is that it aids in retaining soil nutrients from fertilizer and other sources. Secondly, biochar can provide nutrients such as potassium, a limited amount of phosphorus, and other micronutrients. Given that most agricultural soils have been depleted of considerable amounts of carbon in recent decades, the addition of biochar can help reverse the loss.

Farmers can realize long-term improvements to soil health and crop yield with biochar inputs. In one multi-year study, funded by the California Department of Water Resources (DWR), was administered by Sonoma Ecology Center and included support from researchers from the University of California, Riverside, the results were impressive. Biochar increased pinot noir grape yield by an average of 1.2 tons per acre over two years of harvest, paying back the cost of biochar application in just the first year.

There are other applications for biochar. Uses include filtration systems, stormwater management, remediation, and composites. Although in its early stages, biofiber is a good candidate in the latter application as a substitute for costlier and higher environmental impact carbon forms.

Biochar and Climate Change

Beyond its benefits for farming and other applications, biochar also is widely acknowledged for its carbon sequestration benefits in the fight against global warming. It is listed as one of the top five natural climate solutions for climate change mitigation in a 2019 Intergovernmental Panel on Climate Change (IPCC) report.

However, the role of biochar in preventing climate change is not guaranteed. As one article notes, biochar production results from combustion, with greenhouse gases given off in the process

Yet, when energy from the pyrolysis process is harnessed and used in a way that displaces the need for fossil fuels in electricity production, for example, the result may be a positive carbon balance. Such has been the case for the California producer, which utilizes biomass waste removed from sustainably managed, high-risk forests to generate electricity. Its success has now been recognized through the issue of carbon credits.

As businesses increasingly look to reduce greenhouse gas emissions and to offset the emissions they still create, carbon credits may hold the key to accelerating demand for biochar. The biochar market is predicted to grow at a compound annual growth rate of 16.45% through 2025.

Carbon Cycles and Sinks: How Forests Fight Global Climate Change

A graphic representation of the environmental cycle with hands holding a seedling in soil.

In December 2020, the Canadian government announced its plan to plant two billion trees in the next decade, at a cost of $3.16 billion. That strategy is anticipated to reduce greenhouse gas emissions by up to 12 megatons by 2050, while creating as many as 4,300 jobs in the process.

As that recent announcement reflects, forests have been increasingly recognized by policymakers around the world as a crucial component in the “carbon cycle” and the fight against climate change. Effectively managed forests can play a leading role in absorbing and storing carbon, and as such, help reduce atmospheric carbon levels associated with global warming.

What is the Carbon Cycle?

The “carbon cycle” refers to the series of processes by which carbon transitions from land and water through the atmosphere and living organisms. The National Oceanic and Atmospheric Administration refers to the carbon cycle as “nature’s way of reusing carbon atoms, which travel from the atmosphere into organisms in the Earth and then back into the atmosphere over and over again.”

Most of the carbon is stored in rocks and sediments, while the remainder resides in the ocean, atmosphere, and living organisms. While carbon travels throughout the cycle, the total amount of carbon has not changed over time.

Due to human activities such as burning fossil fuels, however, carbon balances within the cycle have shifted, with more of that carbon having been introduced into the atmosphere.

In forests, trees absorb carbon dioxide through photosynthesis. During this process, oxygen is emitted and carbon is stored in woody stems, branches, roots and leaves. The process of absorbing and depositing carbon is known as sequestration.

A forest is referred to a “carbon sink” if it absorbs more carbon from the atmosphere than it releases back into it. This outcome is positive, from a climate change perspective, with carbon stored in woody biomass, wood products, dead organic matter and soil.

On the other hand, a forest becomes a “carbon source” if it releases more carbon than it absorbs. Catastrophic disturbances such as forest fires, windstorms, and major insect infestations can increase the release of carbon and make a forest a net source of carbon in the short run.

Forest Carbon Reserves are Growing

In the past 40 years, forests have moderated climate change by absorbing approximately one-quarter of the carbon emitted by human activities such as the burning of fossil fuels and the changing of land uses. That carbon uptake reduces the rate at which carbon accumulates in the atmosphere and thus slows the pace of climate change.

In the United States, where forests cover approximately one-third of the country, forest carbon stocks have expanded by 10% since 1990. “ Overall forest carbon stocks have increased annually…, meaning U.S. forests have been a net carbon sink, absorbing more carbon out of the atmosphere than they release,” according to a 2020 report by Congressional Research Service.

As of 2019, U.S. forests stored 58.7 billion metric tons (BMT) of carbon in 2019. Most of this amount (95%) was held in forest ecosystem pools, with the remainder sequestered in harvested wood products.

Forest ecosystem carbon pools include above-ground biomass, below ground biomass, deadwood, litter, soil and harvested wood products. Forest soils are the largest pool of forest carbon, accounting for roughly 54% of storage. The second largest pool is above ground biomass, which holds around 26% of forest carbon.

The graph below shows the ongoing growth of overall carbon storage as well as the relative importance of the various forest ecosystem pools, measured in billion metric tons of carbon.

How Forest Management Helps Improve Carbon Stocks

Effective forest management helps to ensure that more carbon is sequestered and that less is released through events such as forest fires or processes such as slash burning.  In the short term, management efforts are aimed at reducing carbon emissions through measures to protect against fire and insect infestations, as well as through avoiding the burning of logging slash.

In the longer term, strategies such as afforestation (planting new forests), and preventing deforestation will play critical roles. Management practices such as lengthening harvesting rotations, species selection and ensuring prompt replanting after harvest or disturbance will also play a part in promoting forest health and further building forest carbon stocks as a critical pillar in our defense against climate change.

How Wood Fiber Could Resolve the Global Plastic Problem

How Wood Fiber Could Resolve the Global Plastic Problem

If you weren’t aware that our planet has a problem with plastic, consider the fact that every piece of plastic ever made could take hundreds of years to decompose. According to CBS News, if you were to put all that plastic end-to-end, it could go to the moon and back 30 times. Plastics are also derived from fossil fuels, a non-renewable resource, which increases mankind’s carbon footprint. For these reasons, a more environmentally-friendly replacement for plastic must be found and one solution lies in our forests.

Is there already a replacement for plastic?

Yes, at least to a certain extent. Plastic coffee cups, for instance, have been replaced in many locations by wood-based products without losing any of the container’s effectiveness. While it’s true that the lids of those containers are still plastic, researchers are enthusiastically experimenting with ways that these too can be replaced by something which is a wood-based product.

Injection molding with wood? 

This may sound strange, but plastic materials which have been used to make toys, toothbrushes, dish scrubbers, and toilet bowl cleaners might soon all be made with a wood-based product rather than with plastic. Already a process has been devised and tested which combines wood fibers with polymers, and is then reduced to tiny particles, to create a material which has the look and feel of wood, but which also has the flexibility and high performance of plastic. In addition to the smaller household items mentioned above, decking and furniture can also be produced with this composite, and even though it is still half-plastic, it represents a significant reduction of the amount of plastic used to create the products.

When will wood-based products become commonplace?

For the time being, some of the exciting processes described above may be only a little more advanced than the proof-of-concept stage, but there is little doubt that more and more wood-based products will begin to replace plastic and other fossil-fuel-based materials.

To produce wood-based materials on a larger scale some hurdles must be overcome, namely that production costs are comparable to that of plastics, so that the wood-based products will compete in the market. Every part of a tree is recyclable, even the residue left behind on machinery.

Nature’s Packaging is committed to the increased use of wood products, especially wood packaging, from sustainably managed forests.

Resources

Benefits of Community-based Natural Resource Management

Benefits of Community-based Natural Resource Management

It was in 1997 that the Community-based Natural Resource Management (CBNRM) project was established in Mozambique Africa, for the purpose of empowering local communities to assume some level of control over how their environments would be managed. This literally constituted a shift in power away from the central government, and into the hands of local authorities who are best equipped to maintain healthy natural resources and to make those resources sustainable indefinitely.

That first CBNRM conference brought together representatives from high levels of government, community members, and engineer types, who were all interested in preserving local environments. The discussions at that conference and in the four additional conferences since then, centered around how to deal with natural resources such as forests and wildlife, as well as developing or strengthening community-based organizations, and about how to add value to resources such as forest products.

Image Attribute: Image supplied by Flickr; Distributed under CC-BY 2.0 License

The most recent CBNRM conference

At the 2018 version of the CBNRM conference, it was recognized that even though the resolution was 20 years into its implementation, there was still a great deal of work to be done, and that there were still significant obstacles to achieving hoped-for results. For one thing, there are still disputes over the jurisdiction of communities, and that makes it extremely difficult to manage resources from those disputed areas. However, since most of these individual communities rely heavily on natural resources such as timber and wildlife, it is essential that all obstacles be overcome, so that communities can realize the benefits of CBNRM.

There are also conflicts over land rights, with various communities squabbling over ownership and spheres of interest. This is an extremely important point, since government agencies and donors have difficulty supporting community groups which compete for the same properties. This of course, creates a great deal of confusion about community rights to natural resources, and it causes a great deal of difficulty in sustaining those natural resources so they can be used to benefit local economies.

In an effort to help resolve some of the community conflicts, and to break up the logjam which has developed over land rights, the World Bank has stepped in to support local stakeholders and their governments. Through the Integrated Landscape and Forest Management Portfolio, a number of initiatives have been undertaken so that land rights can be resolved, land usage can be planned out into the future, reforestation can take place, land restoration can be initiated, and specific areas can be protected, while tourism is concurrently being promoted.

The future of CBNRM

There’s no question that Mozambique has yet to realize the full potential of CBNRM, but at the most recent conference, government leadership was at least made aware of the fact that local economies can be improved by transforming community development, and by protecting the natural resources associated with each community. While progress has been slow over the last 20 years, a new element of enthusiasm was very much in evidence at the most recent CBNRM conference, and it seems likely that participants will now be working together much more closely to achieve the maximum benefits under CBNRM.

Nature’s Packaging is committed to worldwide sustainable forest management practices. Forests sequester carbon from the atmosphere and when they’re sustainably managed, they’ll continue to provide valuable resources to local economies and help fight climate change.

Resources

Benefits of Community-based Natural Resource Management

Benefits of Community-based Natural Resource Management

It was in 1997 that the Community-based Natural Resource Management (CBNRM) project was established in Mozambique Africa, for the purpose of empowering local communities to assume some level of control over how their environments would be managed. This literally constituted a shift in power away from the central government, and into the hands of local authorities who are best equipped to maintain healthy natural resources and to make those resources sustainable indefinitely.

That first CBNRM conference brought together representatives from high levels of government, community members, and engineer types, who were all interested in preserving local environments. The discussions at that conference and in the four additional conferences since then, centered around how to deal with natural resources such as forests and wildlife, as well as developing or strengthening community-based organizations, and about how to add value to resources such as forest products.

Image supplied by Flickr; Distributed under CC-BY 2.0 License

The most recent CBNRM conference

At the 2018 version of the CBNRM conference, it was recognized that even though the resolution was 20 years into its implementation, there was still a great deal of work to be done, and that there were still significant obstacles to achieving hoped-for results. For one thing, there are still disputes over the jurisdiction of communities, and that makes it extremely difficult to manage resources from those disputed areas. However, since most of these individual communities rely heavily on natural resources such as timber and wildlife, it is essential that all obstacles be overcome, so that communities can realize the benefits of CBNRM.

There are also conflicts over land rights, with various communities squabbling over ownership and spheres of interest. This is an extremely important point, since government agencies and donors have difficulty supporting community groups which compete for the same properties. This of course, creates a great deal of confusion about community rights to natural resources, and it causes a great deal of difficulty in sustaining those natural resources so they can be used to benefit local economies.

Conflict resolution

In an effort to help resolve some of the community conflicts, and to break up the logjam which has developed over land rights, the World Bank has stepped in to support local stakeholders and their governments. Through the Integrated Landscape and Forest Management Portfolio, a number of initiatives have been undertaken so that land rights can be resolved, land usage can be planned out into the future, reforestation can take place, land restoration can be initiated, and specific areas can be protected, while tourism is concurrently being promoted.

The future of CBNRM

There’s no question that Mozambique has yet to realize the full potential of CBNRM, but at the most recent conference, government leadership was at least made aware of the fact that local economies can be improved by transforming community development, and by protecting the natural resources associated with each community. While progress has been slow over the last 20 years, a new element of enthusiasm was very much in evidence at the most recent CBNRM conference, and it seems likely that participants will now be working together much more closely to achieve the maximum benefits under CBNRM.

Nature’s Packaging is committed to worldwide sustainable forest management practices. Forests sequester carbon from the atmosphere and when they’re sustainably managed, they’ll continue to provide valuable resources to local economies and help fight climate change.

 

Resources

How Trees Sweat

How Trees Sweat

If Trees Had Sweating Glands to Cool Off From The Heat

During extreme heat waves it’s common for people to seek relief under the shade of a tree yet few of us wonder how trees themselves survive these extreme conditions. Researchers from the University of Western Sydney’s Hawkesbury Institute for the Environment grew trees under controlled climate conditions to see how trees survive these harsh conditions. They discovered that leaves have their own way to survive abnormal heat by releasing water to cool themselves off. This act is very similar to the way humans sweat in order to cool our body temperature.

Over the course of one year researchers learned that trees continuously expel water through leaves when under duress caused by extreme heat. Essentially, this is how trees survive heat waves. Before this was discovered, scientists thought that photosynthesis and water expulsion were merged processes, which means for one to happen, another also needed to happen. They learned this is not the case.

Although these trees were grown in artificial conditions, they provide accurate projections of how trees will respond during extremely hot weather conditions.  When trees under artificial conditions were exposed to the equivalent of a four day heat wave, during peak temperatures, trees stop sequestering carbon. On a larger scale, this means that forests, whether urban or rural, if exposed to extreme heat will stop sequestering carbon. Over time, if global temperatures continue to rise, this could have greater consequences on a forest’s ability to act as a carbon sink.

How Trees Cool Themselves

Under normal conditions, trees cool themselves by a process calls evapotranspiration. Evapotranspiration is the process of water evaporating from leaves when the sun’s rays hit the trees canopy. In some cases tree canopies can divert up to 60% of incoming radiation through this process. However, it can only happen when trees are healthy. If a tree is stressed due to drought or a beetle infestation then the process of evapotranspiration could be slowed or absent entirely.

In North America, more trees are planted than are harvested due to its high standards of sustainable forest management practices. When forests are healthy and sustainably managed they sequester carbon from the atmosphere to help lower global temperatures. Nature’s Packaging supports the use of sustainably sourced lumber used in wood packaging across North America.

References:

How do Trees Grow?

How do Trees Grow?

Wood is strong, flexible, and has been used in a variety of building applications for hundreds of years because it is safe and is a renewable resource. There are many external factors that can affect trees and thus the quality of lumber they produce.  These external factors can have significant impacts on the mechanical properties of wood and results in many dramatic changes such as a difference in density, growth rate, tree size and more.  Annual growth rings are the rings found inside the tree and these growth rings often give environmentalists the most clues as to what journey a tree experienced in its lifetime.

How do Trees Grow?

Trees grow in two directions. First, they grow upwards in order to absorb more sunlight. Then they grow outward to expand in diameter as the tree matures.  The upward and outer growth occurs at different times depending on the species of tree and the season.

The outer bark protects the tree from fluctuating temperatures, insects, diseases and is a tree’s first line of defense from its environment. When a tree is healthy then its bark remains intact, allowing the tree to defend itself from insect attacks such as the devastating mountain pine beetle epidemic.

Tree rings that are reflected in a cross-section of a tree are the lines that will reveal most about tree growth.  Each ring resembles one year of growth. They are created because trees grow faster during certain seasons and remain dormant during other seasons like winter.  These rings will differentiate in width depending on the environmental situation the tree experienced.  During heavy rainfall and good environmental conditions, the year rings will be much wider compared to drought seasons where the rings are much thinner.

In some cases, trees can take up to fifty years to reach maturity in order to be harvested for commercial use. As a tree grows it sequesters carbon from the atmosphere and that carbon is stored in the wood throughout its life cycle. The carbon forms long chains that are the backbone to cellulose, which is the primary component of lumber that helps make it a strong and durable material. Many of the products and resources we use every day arrive at our local grocery stores by means of a wood pallet. Wood pallets are a safe, durable, and sustainable way to transport goods and materials needed across the world.

References

A Quick Take on the Growth Cycle of Trees

A Quick Take on the Growth Cycle of Trees

Trees within forests are like wind and solar power in that they are a renewable resource. Whereas wind and solar energy can be regenerated relatively continuously, trees require more time to convert solar energy to wood so it can be utilized. In this article we’ll take a quick look at a tree’s growth cycle.

Tree seedlings will often wait for ideal environmental conditions to arise before sprouting.  Some species of tree seeds will remain intact for many years, waiting for the perfect environment, while others will only sprout under extreme conditions such as a forest fire. Only when the seeds are exposed to the right conditions will they sprout.

A seedling will appear above the ground and the first two leaves will start to absorb sunlight to provide energy for further growth. Seedlings will then start developing woody characteristics and will continue to grow and seek out the sun. Saplings are usually 1 – 4 inches in diameter and about 4.5 feet in height.  Many nurseries will sell saplings at this point in the tree’s growth cycle because they are capable of being transplanted with a high survival rate.

It is during the early growth phases of a tree’s life that it absorbs the most amount of carbon. During the process of photosynthesis, young trees convert carbon dioxide to breathable oxygen and use the carbon internally for growth. When hundreds of thousands of trees within a forest complete this process simultaneously, they fight global warming by reducing the amount of carbon dioxide in the atmosphere.

About half of any given piece of lumber’s net weight is carbon that was sequestered from the atmosphere and lumber will continue to store that carbon until it naturally disintegrates or is burned for energy. No part of a tree goes to waste! The bark and branches are used for supplies like garden mulch and animal bedding whereas the lower quality of lumber from a tree is used to make wood pallets. According to the research article “Pallet Re-Use and Recycling Saves High Value Material from Landfills,” there are about 4 billion wood pallets in circulation just in the United States. Wood pallets have been used for decades and have established themselves as the safest and most reliable way to transport goods and services while storing carbon sequestered from the atmosphere.

References

How Foresters Limit Their Carbon Footprint

How Foresters Limit Their Carbon Footprint

Forests absorb airborne carbon dioxide, store carbon in wood, and return pure fresh oxygen to the atmosphere. As that process continues, though, gases in the atmosphere absorb the planet’s heat and radiate it in all directions. When that heat cannot escape Earth’s atmosphere, the planet’s temperature warms.

Photograph by Flickr, distributed under a CC-BY 2.0 license.

Photograph by Flickr, distributed under a CC-BY 2.0 license.

Scientists estimate that nature is only able to remove about half of all carbon dioxide added to the environment. The good news is that forests, particularly those in North America, are continuously pulling carbon dioxide out of the atmosphere and storing it in solid wood. Because these forests are growing more than is being harvested, the U.S. Forest Service estimates that U.S. forests currently serve as a carbon ‘sink’, offsetting approximately 13% of U.S. emissions from burning fossil fuels.

Canadian Harvesting Practices

Wood products harvested from forests continue to store carbon throughout their use. According to the Canadian Climate Forum’s Issue Paper #4 from Fall 2015, Canadian timber harvesting practices emit minimal greenhouse gases. Improvements are continually being made to the industry’s lumber manufacturing practices to reduces its carbon footprint.

Energy and greenhouse gas emissions to produce forest products are less than materials wood often replaces, such as metals, concrete and plastic. Canada’s forest products industry has been a leader in reducing greenhouse gas emissions from its manufacturing processes. Since 1990, the pulp and paper industry in Canada has reduced emissions by about 65%. This has been accomplished by replacing fossil fuels used for mill processes with low net-carbon emissions energy generated by burning wood residues once disposed of by burning without energy recovery.

U.S. Harvesting Practices

The United States has about 751 million acres of forest area, equal to about one third of the country’s total land area. According to the 2010 National Report on Sustainable Forests, forty-four percent of United States forests are owned by local, state, or national governments and the rest are owned by private land owners. Sierra Pacific Industries, a forest products company, is one of the largest private land owners in the country, and is typical of how landowners approach sustainability. Regarding how their land is managed, Mark Pawlicki, the Director of Corporate Affairs and Sustainability for Sierra Pacific Industries, states,

“Sierra Pacific manages its forest lands on a sustainable basis. In California, we operate under the state’s rigid Forest Practices Act and Forest Practice Rules which require large timberland owners to not harvest more than they grow. In both California and Washington timber harvests are conducted only after a review and approval by state regulatory agencies. In addition, all of SPI’s 1.9 million acres of forests are certified under the independent Sustainable Forestry Initiative, which ensures that we are managing our lands on a sustainable basis for wood products, wildlife habitat, water quality, and other environmental attributes.”

Forest Certification

Voluntary third-party forest certification began in the 1990s in response to market concerns about forest management and illegal logging, primarily in developing countries. Other widely used forest certification programs in North America are the Forest Stewardship Council (FSC) and the Programmme for the Endorsement of Forest Certification. Programs like these are all designed to assure consumers that the wood products they purchase have been produced sustainably. They are also assured that these forests are doing their part to offset fossil fuel carbon emissions.

Resources

 

This is the second of a five-part series on forests and climate change.

Previous: The Carbon Cycle

Coming Next:

  • How Non-Profit Forest Certification Programs Were Born
  • REDD+ and UN-REDD
  • The Future of Forestry
© 2021 Nature's Packaging® is federally registered with the U.S. Copyright Office by the National Wooden Pallet & Container Association. All rights reserved.