Hardwood or Softwood: What’s the Difference?

Of the many forest products used by consumers every day, wood in the form of lumber is the most recognizable. The lumber that we use to build homes or make furniture is produced from softwood or hardwood trees.

The differences between the two types of trees seem obvious from their names, but the actual differences are much more compelling. Interestingly, one basic fact is that “hard” wood and “soft” wood is really based on the botanical properties of a tree rather than the objective hardness of the wood.

Both hardwood and softwood are integral to global industry and infrastructure.

What is a Hardwood Tree?

Angiosperm trees produce what we know as hardwood. Angiosperms are flowering trees with enclosed seeds. The enclosure is often a fruit or nut.

They are usually deciduous, dropping their leaves in the autumn, sometimes with a vibrant display of color. Hardwood trees have broad leaves with fine veins.

Angiosperms grow slowly, which makes their wood dense and heavy. They have a tubular cell structure with pores that produce prominent grain patterns. They are found in tropical and temperate forests all over the world.

Common angiosperm hardwood trees include oak, maple, and walnut.

What is a Softwood Tree?

Softwood comes from gymnosperm trees, which, unlike angiosperms, do not flower. Softwood trees are usually conifers like pine, cedar, and spruce. Their seeds are not enclosed and they’re often in the form of a cone.

Because gymnosperm seeds do not have a fruit or nut enclosure, they spread more easily and in a wider area than angiosperms. Softwood trees also grow faster, have a simpler cell structure, and produce sap.

Gymnosperm leaves are needle-shaped and do not drop seasonally. They’re commonly called evergreen trees. Approximately 80% of timber comes from these softwood trees. The most common group of softwood trees, conifers, is also those most valued for its lumber. Conifers grow all over the world but are especially abundant in cooler climates and higher altitudes.

Do Hardwood and Softwood Trees Store Carbon?

Yes. Through the process of photosynthesis, hardwood trees and softwood trees both remove carbon dioxide from the atmosphere. Carbon dioxide, light, and water transform into sugars including glucose, starch, and cellulose.

This is a form of carbon sequestration, in which carbon is captured from the atmosphere. Trees are natural carbon cleaners. The carbon they store helps offset carbon emissions from other sources.

Carbon is used and stored in every part of a tree, from leaf to root. Starch is found in flowers, fruits, and cones. Glucose aids in respiration, keeping the tree alive. Cellulose, which makes up 40% of wood, supports cell walls. Without cellulose, trees would be unable to stand upright.

An astonishing 50% of the dry mass of a tree is made up of carbon captured from the atmosphere. Harvesting trees and using them for lumber or paper does not release the carbon they’ve stored. Only burning or decay will send it back into the atmosphere.

Though softwood and hardwood trees absorb carbon differently (primarily due to growth rate) they are equally efficient.

What is Made From Hardwood Lumber?

Hardwood lumber is more expensive than softwood because it takes longer for the trees to reach a suitable size for harvest. Hardwood is used for furniture, flooring, cabinets, and musical instruments.

Though hardwood in general is denser and stronger, that is not the case for every species. For example, yew (a softwood) is significantly denser than aspen (a hardwood).

If a project is more decorative than functional, a softer hardwood may be used for its grain pattern rather than a denser softwood that would be more durable.

Hardwood is more difficult to work with than softwood. It is valued by woodworkers for its beauty and strength.

What is Made From Softwood Lumber?

Softwood is the workhorse of the lumber world. It is less expensive and easier to work with and finish. It is used for everything from framing houses to making paper. It’s also used for every single thing hardwood is used for, even instruments.

Softwood is used for Christmas trees, window frames, wood pallets, doors, and plywood. Cedar is used for outdoor decking and siding due to its natural resistance to fungi, insect, rot, and bacteria. Its popularity makes cedar’s price rival that of many slower-growing hardwoods.

Softwood is versatile, renewable, recyclable, and ubiquitous. We’re surrounded by it every day.

Wood is a Renewable and Recyclable Resource

Both hardwood and softwood are incredible, versatile resources. Lumber and other forest products are used in the daily lives of people across the globe.

Wood is one of our most recycled and reused products. Wood furniture is passed down through generations, recycled lumber is used for other projects, and wood pallets are transformed into décor or other items after being reused many times.

Modern logging practices create sustainable, healthy forests. The days of clear-cutting entire old-growth forests are long gone. Today, replanting, selective harvesting, and fire prevention are creating strong, productive forests that benefit both the environment and the economy.

The forest products industry is efficient and dedicated to the health of every aspect of the woodland. From wildlife habitat to soil conservation, forest management strives to keep these amazing resources sustainable for future generations. Private forests currently grow more trees than are harvested.

A harvested tree is used for more than lumber. Every piece of the tree has a use. Small branches, bark, and sawdust can be used as biomass for energy production. This material would otherwise be left to decay, burned on site, or sent to the landfill. In every one of those scenarios, the carbon is released without benefit.

When used as fuel, this material becomes part of the energy grid, reducing reliance on fossil fuels. It is carbon-neutral, releasing no more carbon than had it been left to decay.

The demand for forest products including lumber, paper, wood packaging, and biomass has steadily increased for decades. Rather than harming our forests, responsible woodland management resulted in a 50% increase in trees in the United States since the 1950s.

Responsible management of hardwood trees and softwood trees across the country has made the forest products industry a model of economically beneficial sustainability.

Wood On The Web: 5 Great Resources for You

The world wide web has delivered easily accessible resources for nearly every industry. What was once available only in classrooms, libraries, or laboratories can now be found with the click of a mouse.

Online forestry and forest products data and information is available for readers to learn about progress in forestry, research, forest products, environmental advocacy, and economic advancement.

At Nature’s Packaging, we strive to bring you interesting and useful resources on the web and here are five great forestry and forest products website resources for you. There’s something here for everyone from the curious consumer to the industry professional.

The Penn State Extension-Wood Products

The Penn State Extension offers a variety of online learning resources, including courses, articles, videos, and webinars. It also features in-person conferences and workshops.

The extension has 11 overarching areas of study, including food safety, business and operations, community development, animals and livestock, and forests and wildlife. It’s in this last section where students and learners of all ages will find a treasure trove of forest products information.

From urban forestry to maple syrup, this site covers a lot of ground. The Wood Products section is filled with information ranging from the basics of lumber to research on insects.

The Penn Extension site has something for everyone interested in wood products. From builders to landowners, students to casual enthusiasts, and newbies to experienced members of the forest products industry.

The site is easy to navigate, with efficient and effective content filters. You can browse by educational format, author or instructor, or date posted. This is a terrific general knowledge site that promotes an understanding of the many layers of the wood products industry.

International Society of Wood Science and Technology

The International Society of Wood Science and Technology is a non-profit, international professional organization. Members have access to conventions, international meetings, scientific missions, publications, and more.

Their website offers teaching units and other educational materials, accreditation information for Wood Science and Technology Programs, and access to recent issues of their publications.

Members have access to the full archives. They offer reduced-price student memberships as well as regular memberships. One of the greatest things about this organization, and its website, is the Short Term Scientific Mission.

Members are eligible to apply for these special research grants. They are used to send individuals into the world to collaborate and research away from their home base.

What’s special about the website is that anyone can see previous projects completed with STSM grants. Articles and videos discuss project goals and outcomes achieved during the visiting researcher’s stay.

Think Wood

Builders, contractors, and architects are the audience for the Think Wood website. This is a beautiful site that will appeal to the design eye of these professionals. Think Wood partners with industry groups to provide education and inspiration around advances in wood products.

The site offers articles, videos, and infographics without cost. They aim to provide the resources their audience needs to benefit from building with wood.

Topics range from forest management and carbon sequestration to meeting building and fire safety codes. They even offer continuing education courses.

While it’s designed for building professionals, this site is very accessible. It has a lot of information about sustainable forestry and proactive steps to reduce the carbon footprints of all sorts of projects. It’s also a great place to learn the basics of mass timber.

Think Wood excels at the visual. The site has incredible pictures of wood projects in all stages of completion. Their project gallery is filled with stunning photos accompanied by a lot of great information.

Inspiration is where Think Wood excels.

ForestProud

ForestProud is all about climate solutions. The Society of American Foresters recently merged with the #forestproud project to create a community that supports and promotes climate action in our forests.

The site is full of articles that link forest management with real-world positive outcomes. They talk about mass timber and urban renewal. They discuss biomass, wildfires, and carbon credits.

All of this information could be overwhelming. But it’s well-organized and helps visitors focus on connecting with forests as a climate solution.

This is a “finger on the pulse” website. It encourages community members to send in selfies wearing their branded t-shirts or with their stickers.

It links visitors to videos about sustainable forests and forest resources. It offers articles to educate. It even gives suggestions for relevant podcasts. This group has a social media presence and knows how to use it to further its cause.

ForestProud is a very accessible website. It’s welcoming and warm. Visitors can browse and learn, or they can choose to interact. It’s a well-conceived initiative to promote forest management and climate action.

National Wooden Pallet and Container Association

The National Wooden Pallet and Container Association is a professional non-profit association that supports the wood packaging industry. Its website is filled with information for both professionals and curious web surfers alike.

As industry advocates, the association offers networking, educational opportunities, and specialized software tools for pallet design. Members can register for events and find the latest industry news.

They also use their website to serve as the voice of the unsung hero of the supply chain: the wood pallet. Both members and non-members can access issues of the organization’s Pallet Central magazine right on the site.

The NWPCA site is designed for industry professionals. But there is a lot of information about sustainability for the general public as well.

Favorite Web Resources

These five websites are an excellent place to start for anyone interested in forestry and forest products. The key is to build a network of websites that adds and advances your knowledge of the industry.

Do you have a favorite wood related website to share? Join us on our LinkedIn page and comment on the websites in the forestry and forest products niche that you like.

 

Made From Trees-Forest Products Move Markets

Every day, many of the items used in daily life were made possible by forest products industries. The type of forest products in demand the most are various types of lumber. Used to make everything from furniture to home construction to wood pallets and containers; lumber is vital to many industries.

The transportation and logistics industries use wood pallets to move nearly everything. 1.8 billion pallets are in use every day, shipping 90% of the world’s goods. 90% of those pallets are made of wood, making them some of the most important forest product-derived items in the world.

Forest Products and Processes Add Sustainability

Forest products play a major role in the supply chain. Within the subject of climate change and the impact to the environment, the supply chain is under pressure to increase sustainability and reduce carbon emissions. The forest products industry is at the forefront of harvesting and creating renewable resources and products that are reusable and recyclable.

As part of that process, modern logging practices are incorporating sustainable principles to help forests remain healthy and productive. Well-managed forests generate some of the most valuable resources for mitigating climate change and provide useful products that positively impact daily life.

Wood Packaging Logistics and the Supply Chain

Wood packaging used in the supply chain includes pallets, boxes, crates used to transport goods. Well-designed wood packaging keeps goods from being damaged during transit. When heat treated and stamp-certified according to international standards like ISPM-15, wood packaging ensures that goods move seamlessly between countries and facilitates international trade.

Wood Pallets in the Supply Chain

Wood pallets are a core component of the supply chain. Their functionality makes them easy to load and unload via forklifts and pallet jacks. Their durability helps protect items shipped and their design makes them easy to store for reuse.

Wood pallets set the standard for supply chain strength, resilience, and sustainability. 95% of wood pallets are recycled and reused multiple times throughout their lifecycle. Pallets, as a crucial link in the supply chain, are leading the way toward a circular supply chain that eliminates waste.

They are also increasingly popular with consumers for DIY projects as the public recognizes their versatility. When they do reach the end of their useful lifespan, wood pallets are often down-cycled into other useful products like mulch, wood pellet fuel or craft wood.

A current challenge for wood pallets in the supply chain is availability. A consistent supply of quality pallets has always been in demand. When the pandemic hit, so did a broad increase in products shipped via e-commerce. As shipping has rebounded from those initial lock-downs, demand for pallets has exceeded supply.

At the same time, delays in other parts of the supply chain were causing the price of lumber to increase. Industries that use pallets to ship products began to appreciate the wood pallet as a principal component of a stable supply chain.

Forest Products-Above and Beyond

A relatively new arrival in the world of sustainable forest products is mass timber. Mass timber is an engineered product made up of multiple pieces and layers of wood sandwiched together. The result is an incredibly strong and resilient building material that is used in the construction of large buildings that were once built with steel or concrete alone. Mass timber technology is being used to build in Canada and Europe, and is now beginning to launch significantly in U.S. building construction.

Wood Fuel Powering Industry

Burning wood for fuel is nothing new. But the processes used for this age-old forest product are changing. Rather than using traditional firewood for heat in homes, people are turning to pellet stoves.

The pellets used in these stoves are commonly made from compressing wood byproducts that would otherwise go to waste. Wood pellets contain very little water, making them light and easy to handle and transport. They burn hot and clean and are considered to be carbon neutral.

The same pellets can be used to produce steam and electricity.

Biomass consisting of wood and plant products is finding a place as a clean energy option. It can be burned directly or processed into gas or liquid fuels. While not as clean as solar or wind energy, it is vastly cleaner than fossil fuel use and is renewable.

Residential buildings and industries are turning to biomass and other renewable sources for their energy needs.

Forest products surround us in our everyday lives. Renewable forestry practices have created an industry that leads the way in a world rightly focused on sustainability and net zero carbon emissions.

7 Great DIY Ideas for Pallet Wood Projects

Wood pallets are the perfect eco-friendly medium for some great D-I-Y wood projects. After being retired from use as pallets, recycled pallet wood can have a rustic, natural finish ideal for many different applications. It can be used as-is or dressed up with paint or stain.

Pallet wood can be used indoors or out and for everything from the simplest box to entire sets of furniture. Their versatility in design means you can use them as whole pallets in their original form or taken apart. If taking pallets apart, always be aware of nails that may be hidden or protruding slightly. Always use gloves, safety glasses, and the right tools to disassemble a pallet. Here’s a great resource on dismantling a pallet using different tools and techniques.

Most wood pallets are safe for home use, wood pallets are no longer chemically sprayed in the United States but other countries still use these techniques to prepare their pallets for export to other countries. Be sure to do a thorough inspection and make sure to check for stamps or markings that indicate if the wood was treated chemically. Here is an example of an MB stamp, which you do not want to use:

Now that we’ve gotten those points out of the way, let’s look at 7 great DIY ideas for pallet wood projects.

Art with Reclaimed Pallet Wood

While most people imagine using pallet wood to build, it’s also a great base for wall art of all kinds. Painting, wood burning, and carving can all turn your pallet canvas into a striking piece of home décor.

Pallet Wood Furniture

Pallet wood furniture projects range from simple to elaborate. If you’re new to working with wood, try something simple like a shoe rack. All you need are basic tools.

Ready for more advanced recycling? Make a pallet wood bed frame. They’re fairly easy to construct and give your room a natural, modern look.

If you’re an experienced woodworker, make something novel. Pallet wood makes terrific swing chairs and outdoor furniture sets.

Wall Covering

No, we’re not talking about 1970’s wood paneling. Use pallet wood to build a plank accent wall. The result is a warm, cozy feel that’s also modern and versatile.

Looking for a slightly smaller scale? Try a pallet wood backsplash in your kitchen. Use a water resistant finish to keep it looking great for years.

Ceiling Covering

Is your porch ceiling uninspired? Cover it with pallet wood for a finished, rustic look. This sturdy, long-lasting wood creates a statement in a place that’s often overlooked.

Any entryway with a ceiling can be styled with pallet wood. You can make this a fairly simple project with straight perimeter and field boards or jazz it up with some creative angles.

Storage Boxes

Pallet wood storage comes in infinite shapes, styles, and complexity. From a simple bookcase to an elaborate storage coffee table, pallet wood can make a place for just about anything.

We also like simple chests with an amazing amount of storage and clever kitchen trolleys.

Garden Boxes

Pallet wood is very accustomed to being exposed to the elements. Garden boxes, planters, raised beds, and herb gardens are all easy projects. You can focus on sustainability and create a beautiful outdoor space.

Tables

Tables are among the most common pallet wood projects. There is an incredible range of design options, from very simple side tables to full dining sets. A pallet table is a good way to practice your woodworking skills. Options with clean lines using basic tools are plentiful.

We like an easy coffee table on wheels or a rustic dining table.

Pallet wood is remarkably versatile. If you love a good upcycle, try your hand at one of these DIY wood projects.

 

Nature’s Packaging-Let’s Learn About Sawmills

Sawmills remain one of the most important tools for the creation of wood planks, taking raw timber materials and turning them into usable wood. The sawmill’s basic operation has not changed much since its creation. In this Nature’s Packaging post, we’ll learn how sawmills operate and their history.

What is a Sawmill?

In a modern mill facility, the raw timber can be debarked and bucked (cut to length) before entering the mill or those processes can be part of the intake process of the mill itself.

The next phase of the process is converting the logs into boards with the use of several motorized saws at various stages that start by cutting large timbers into several smaller rough sawn pieces. Those rough sawn pieces can then be “re-sawn”, which is when the wood is finished into boards of various thickness and lengths, and can also be planed for smoothness.

This is a quick general overview of processes and methods in a mill, there are many different specialty operations that can also take place in a sawmill and those will be covered in other Nature’s Packaging posts.

The History of the Sawmill

Prior to the use of sawmills, boards were cut manually using saws operated by men. The wood was rived and planed and then hewn.

Pitsaw operation

Typically, two men used a whipsaw or pitsaw to do this, one above and one person under it in a saw pit. The whipsaw, a long blade held on either side, was moved back and forth to cut the wood to just the right level.

There is evidence of mechanical sawmills that date back to the 3rd century AD.

Roman Hierapolis stone sawmill-3rd century AD

In the 11th century, the use of water-powered mills helped to ease the burden while producing more of the materials people needed as cities and towns grew. These water-powered systems were common in Spain, the Middle East, Central Asia, and Northern Africa. A few hundred years later, they were widely present throughout Europe.

Water wheel mill

In this version of a sawmill, a circular motion of the wheel helped to create the movement of the blade. Only the saw had power derived from the water, and the logs were typically still loaded by hand. A movable carriage eventually developed to speed this up.

In the 18th century, the Industrial Revolution created significant change for the timber industry. A circular saw blade was invented during this time, with credit going to Samuel Miller via a British patent #1152 in 1777.

The use of steam power in sawmill operations a century later meant that sawmills could operate at a faster rate to keep up with the ever-growing demand. The scrap lumber from the mill was often used to maintain a boiler.

In the 20th century, electricity was introduced and revitalized the way sawmills worked again. By adding electrical power and more innovation through computer technology, sawmills can produce lumber at a very fast rate by maximizing the number of optimal cuts taken in a single log.

How Today’s Sawmills Work

The same basic methods are still used in sawmills today though today’s mills are far more massive in size and capable of producing a large amount of lumber very quickly. They are expensive to run as most are highly computerized to make use of as much material as possible while still working to be efficient.

The process works as follows:

  • Trees are selected for harvesting, the trees of felled, and they are bucked to length, meaning just the logs are taken to the mill to be used.
  • The branches are removed in a process called limiting. The logs are loaded onto a truck and driven to a railroad or other location nearby for transportation.
  • The logs are scaled and debarked as the first steps. Then, the logs are sorted by species, size, and the end use for them, such as chips, plywood, or lumber.
  • The logs are then sized down to be able to be placed into the sawmill based on the desired end goal.
  • The cants (or unfinished logs) will then be broken down further. The fitches, which are unfinished planks, are then edged to remove any irregularities.
  • The finished pieces are trimmed, dried to remove moisture, planed to smooth the surface of them, and then shipped to their destination.

The Rise of Portable Sawmills

Portable sawmill

Portable sawmills have existed for over 100 years, but they gained real popularity in the 1970’s. These portable sawmill operations helped meet the exploding need for lumber products in the construction and forest products industries.

Because these portable systems can process material that would otherwise be wasted or underutilized, they are a unique solution for today’s industry and able to help reduce carbon emissions by processing materials onsite.

Portable thin kerf bandsaw mills are relatively easy to operate and can produce high-quality finished lumber from just about any species of tree. Initially, many property owners purchased portal lumber mills so they could clear a stand of trees quickly. They found that lumber was a profitable business, which encouraged them to expand their operations.

Today, portable mills are effective at not just producing quality finished products, they are also reducing the environmental impact of lumber production. A portable sawmill can harvest smaller sections within a stand of trees, and they lower the need to transport logs to another facility for processing, thereby removing steps from the process.

Portable sawmills can be helpful in urban areas. Trees that pose a public safety risk to pedestrians or that normally wouldn’t be processed in an urban environment can be removed and made into boards and other usable materials.

Portable sawmills can help foster more forest stewardship through more precise forest management and lessening the environmental impact of harvesting activities.

Achieving Supply Chain Sustainability with Wood Pallets

Supply chain sustainability becomes more important with the passing of new climate change legislation. Companies from every sector are identifying challenges and presenting solutions to make their supply chains more environmentally friendly.

For every industry, taking action to mitigate climate change is fast becoming a primary concern. As one of the fundamental cogs in the economic wheel of trade and commerce, supply chain management can lead the way with long-term sustainable solutions.

A More Sustainable Supply Chain

For consumer businesses, the supply chain accounts for 80-90% of environmental impacts. This includes greenhouse gas emissions and air, land, water, and other ecological impacts.

Addressing those impacts to comply with climate action regulations and consumer demand is one of the great challenges facing business today. It won’t be easy, but creating a more sustainable supply chain is possible.

Nearly every major industry already has access to a crucial part of a sustainable supply chain: the wood pallet.

One of the supply chain’s most essential components, the wood pallet is also its most sustainable. Of the 1.8 billion pallets in use in the United States, 90% are made of wood.

The life cycle of wood pallets represents a gold standard in terms of sustainability. As the holder of an Environmental Product Declaration UL Certification, wood pallets exemplify the philosophy of reduce, reuse, recycle.

Strong, long-lasting, reusable, and recyclable, wood pallets may even produce a net positive carbon footprint. They store carbon dioxide throughout their life cycle and save it from release into the atmosphere.

Today, the wood pallet represents a sustainable choice. The challenge is to realize the same level of sustainability across entire supply chains and, in effect, operate at a net zero waste capacity. Recyclable pallets manufactured from renewable resources is a key choice.

Consumers are demanding that companies make decisions based on positive environmental impact. Everyone from suppliers to end users is making sustainability a priority.

A company needs a comprehensive plan for sustainability at every level. Now is the time to examine and improve processes, but where to start? That’s where good partners can be the necessary guide with insight and metrics.

The Challenges Ahead

Sustainability challenges begin with system complexity. Companies have historically ignored supply chain areas outside their direct control. This leads to gaps in information and bottlenecks that go unnoticed until they bubble up and require action.

Sustainability is measured by the environmental and human impact of every single step of the lifecycle of a product. A company that creates eco-friendly headquarters also needs to attend to working conditions, pollution, and transportation practices abroad.

Problems vary depending on the industry. One company may identify air and water pollution from suppliers’ operations. Another may find inadequate safety measures where raw materials are procured.

Companies need comprehensive information about each step in the lifecycle of their products. That includes energy providers as well as suppliers and sub-contractors.

Once detailed information is collected, planning can begin for remediation of negative impacts. Over 80% of businesses do not have the information they need improve the sustainability of their supply chains.

Consumer businesses balance affordability with reliability and sustainability at every level of operation. Instituting sustainable practices may seem costly, but they strengthen the supply chain and save money in the long-term.

Decreasing pollution, shoring up facilities against extreme weather, and making positive contributions to healthy communities all make the supply chain more durable and more efficient. Time and materials are saved by eliminating wasteful and harmful practices.

Managing Supplier Sustainability

The most challenging aspect of creating a more sustainable supply chain is working with suppliers and their subcontractors. 75% of companies do not work with suppliers to reduce carbon emissions.

Businesses are like all customers—they have influence. A company can search for suppliers that already have sustainability goals and practices in place. They can also mandate that their suppliers bring facilities into compliance with a set of practices they determine will increase sustainability.

An even better solution is to work directly with suppliers. Using clear and verified guidelines for sustainable practices, companies can help suppliers improve operations.

The company goes from demanding customer to trusted partner. The environmental and human impact of the improved relationship strengthens to a more sustainable supply chain.

How a company works with suppliers depends on what objectives are identified. Making sure that everyone is using wood pallets is an easy first step in helping suppliers become more sustainable.

Best Practices in Sustainability

The complexity of supply chain sustainability can make it seem unmanageable. Organizations like CDP, World Wildlife Fund, The Sustainability Consortium, and others offer guidance. They help companies find issues and set goals for decreasing environmental and societal impact.

Looking to wood pallets as a framework, we can see some best practices at work.

Supply chains should use, wherever possible, renewable resources. Invest in solar, wind, and other clean energy use to build infrastructure and decrease pollution. Buy recycled wood pallets from suppliers wherever possible.

Make landfill avoidance a priority. Reduce waste, reuse materials, and recycle what is no longer useful. Wood pallets can be reused up to 15 times, and can be recycled into furniture, structures, biofuel, animal bedding, or mulch.

Studies show that 95% of wood pallets are recycled into usable materials. Even the small amount that ends up in the landfill can be used as the biodegradable top cover.

Incremental Improvements in Sustainability

The global supply chain is still far from its sustainability goals. Even the wood pallet industry can do more.

Ensuring that your wood pallets are used as many times as possible should be goal number one. Widely available recycling initiatives reduce the number of pallets that go to the landfill. Encouraging or helping suppliers switch to wood pallets improves lower-tier sustainability.

Every step gets us a little closer to a circular supply chain. Waste reduction, energy conservation, and greater emphasis on processes that benefit both society and the environment all reduce long-term costs.

Wood pallets are an important part of a sustainable supply chain. Unlike plastic pallets, they are recyclable, sustainably produced, and biodegradable.

There are places in your supply chain where sustainability requires concerted efforts with far-flung partners. Implementing the use of wood pallets across your company and its suppliers is an uncomplicated, powerful way to make a difference.

Nature's Packaging Featured Image

What are the Different Parts of a Tree?

When you look at a tree, do you usually see it as a singular object? You may notice that one is different from the other, but don’t often stop to wonder why. The forest products industry believes that the more we know about trees, the more responsibly we can manage our forests.

Though they seem very different from flowers and grasses, trees are perennial plants. The trunk is a very long stem that supports branches, leaves, flowers, fruit, and seeds.

All trees gather light through their leaves and use that for fuel in a process called photosynthesis.

It is that same trunk that makes trees different from other plants. Containing woody fiber, the trunk is strong and allows trees to grow taller than other plants. The trunk of a tree grows both up and out.

Counting Rings

Cross section of tree trunk showing growth rings

Most of a tree’s trunk is not living. Only the outermost portion, just beneath the bark, is functioning. That living layer is called the cambium and it produces two secondary layers that do all the heavy lifting to sustain the tree.

Cross section of a tree trunk

The outer layer is the phloem, carrying the nutrients from photosynthesis down from the leaves to the rest of the tree. The inner layer, the xylem (also called sapwood), is how water is transported upward from the tree’s roots.

Each year the tree grows new layers. The old phloem becomes bark to protect the outside of the tree. The old xylem becomes part of the inner heartwood that supports the rest of the tree.

The death of old layers and the birth of new ones produce the rings that indicate the age of a tree. Each year, a tree produces two rings, one in the spring and one in the summer, as the trunk grows.

Determining tree age can be done by counting rings from a felled tree or a core sample. It can also be done based on the circumference of a tree, accounting for that species growth rate.

Every species grows at its own rate. Some, like the deciduous Hybrid Poplar, grow quickly (up to eight feet of vertical growth per year). Others, like the deciduous Bur Oak (less than 12 inches per year) or the coniferous Eastern Hemlock (12-24 inches per year) grow much more slowly.

If you’re tree planting, consider how quickly you want a tree to reach its full height. You may choose a quick-growing species for shade or privacy or a slow-growing one that won’t shade your garden too quickly.

Determining the age of a tree by its diameter is best completed by an arborist since diameter growth depends on both species and environmental conditions.

Bits and Pieces

tree branch

In addition to a trunk, every tree has branches and twigs. These hold leaves, flowers, and fruit, allowing the tree to reproduce and gather sunlight to continue growing. New non-trunk tree growth appears at the end of twigs and the tips of roots.

Two basic tree classifications are deciduous trees and coniferous trees.

Deciduous Trees

A deciduous tree sheds its leaves, usually in the autumn. Its leaves often change color as the nights get longer and cooler. In warmer parts of the U.S., deciduous trees may lose their leaves during the dry season.

Deciduous tree leaves are flat and often wide. These trees may produce fruit or flowers that contain seeds.

Deciduous treeMost of us are familiar with many deciduous tree species, including oak, maple, birch, and apple trees. Deciduous trees are hardwood trees and you see their wood used in items like oak furniture, cherry wood kitchen cabinets, and maple flooring.

The most valuable part of a hardwood deciduous tree is its trunk. A tall, straight trunk produces strong, dense boards with beautiful grains.

Coniferous Trees

A coniferous tree is sometimes called an evergreen, as its leaves do not change color and fall in the winter. The leaves of a coniferous tree are its needles. These trees produce cones that contain seeds.

coniferous tree

The wood of a coniferous tree is softer than deciduous wood and makes up the majority of timber harvested each year. Conifers are used for structural lumber and their wood pulp is used to make paper.

Trees and Pallets

tree and a wood pallet

Pallets can be manufactured from either deciduous or coniferous trees. These are usually categorized as softwood or hardwood, with spruce, pine, and fir (SPF) as softwood examples and oak as a common hardwood example.

The pallet industry typically uses industrial grade wood products to manufacture packaging and pallets. All of the forest product industries strive to use as much material from the tree as possible. Beyond that, the wood pallet and container industry have attained a recycling rate of better than 95% of their core product.

A recyclable wood pallet

Trees and timber have been products of this country since its founding. Managed and conserved properly, trees are an incredible resource that still provide new and innovative values to this day.

Volunteering to plant and maintain trees in urban, recreational, and park settings is a great way to enrich the community and meet new friends.

Who knows? You may find a new path in the wood.

A forest path

U.S. Forest Products-Annual Market Review 2015-2021

The market for forest products in the U.S. is healthy, but for how long? Global macroeconomic pressures are inflicting inflationary pains on everything from wood pallets to essential household items, and the forest products business is no different. Since early 2020, the COVID pandemic’s lock down and public health and safety measures nearly ground the world’s economy to a standstill. Today, we’re still coming out of hibernation, so to speak, but there’s plenty of room for optimism too.

Forest products have weathered the pandemic and subsequent lock downs relatively well. That does not mean serious challenges remain, yet the overall outlook has a positive trajectory. With those considerations in mind, here’s a breakdown of the most critical takeaways from the latest report U.S. Forest Products Annual Market Review and Prospects, 2015-2021.

Purpose of the Annual Market Review

The annual market review aims to build a holistic analysis of the forest products industry, including a breakdown of each market segment, such as sawn softwood and sawn hardwood. The report also outlines the developments that are shaping forest product consumption. The booming housing market is a prime example, as demand for raw lumber and building supplies remains historically high.

There’s even a brief mention of how biomass energy dovetails with the federal government’s emphasis on sustainability and climate change. Altogether, each of these factors forms a comprehensive picture of the U.S. forest products industry. The author of the review, Delton Alderman, has included everything that may affect the business moving forward over the next five years or so.

Current State of the Forest Products Market

Interestingly, the report’s bottom line is this: The table end of the covid-19 pandemic is still influencing the U.S. economy at large, and the forest products market business is no different. Specifically, the review identifies the most significant contributors to the disruption as the waning global demand for wood products, geopolitical events, and the trade disputes that have been ongoing for several years.

But according to the report’s author, a healthy U.S. housing market should be a boon to the forest products industry as home prices continue to rise along with a lack of available homes for sale, including new home construction that simply can’t keep pace with consumer demand. That’s a high-level look at the report, so let’s drill down into little bits of information and data that go into the review.

Information and Data in Annual Market Review

The report’s author builds out the review by looking into information and stats that focus on forest products. The study delves into consumption, trade, prices, credit, production, and the aforementioned macroeconomic effects. The review categorizes each market segment. The downside is that the nomenclature used by the author may be different from the terminology you use internally within your company or industry. Additionally, there is also data on product prices, international trade, domestic markets, and policy initiatives.

When is the Annual Market Review released?

Published in conjunction with the United States Department of Agriculture, U.S. Forest Products Annual Market Review and Prospects, 2021-2025 comes out every year. The overriding difference this year is the depth and significance of the disruptions triggered by the COVID-19 pandemic. As such, the report looks at the market in its entirety instead of focusing on a single sub-sector.

The time frame in question may differ from report to report as economic conditions dictate how far into the future industry leaders should look for near-term trends. This time, the report outlines what the industry may soon face from 2021 to 2025. It’s the minimum amount of time necessary for a proper statistical analysis that seeks to forecast trends in juxtaposition with past data. From that point onward, the review breaks down the statistics and greatest influences for each category of forest products.

Forest product categories in the report

According to the report’s definition of forest products, the U.S. market can be broken down into several categories:

  • Timber products production, trade, and consumption
  • Sawn softwood
  • Softwood log trade
  • Sawn hardwood
  • Hardwood log trade
  • Pulpwood
  • Furniture
  • Structural panels
  • Engineered wood products
  • Hardwood plywood
  • Particle board and medium density fiberboard
  • Hardboard
  • Insulation board
  • Fuelwood

Additionally, the author explains the impact of economic conditions on each market segment. By taking this approach, the report can give a 360-degree view of the forest products industry and where it may turn in the future. Business leaders need an accurate portrayal of the industry to make investments and plan for successes – or further economic disruption due to factors beyond their control (i.e., rising inflation).

Currently, we are still in the nascent stages of a recovery from COVID-19, which most likely will affect the industry’s trajectory over the near term. And countries are facing headwinds from the invasion of Ukraine and the subsequent recessionary environment.

Some segments will feel the impact more than others. The purpose of the review is to provide a starting range on how these forces will affect those markets. Without these insights, industry-leading companies would have a much harder time getting a snapshot of the market and whether or not the exacerbating factors are beyond their control.

Take some time to review the report, which can be found at the link above, and see how the economic conditions may factor into your strategic decision making.

 

Wood biomass

Woody Biomass: A Nature’s Packaging Study – Part 2

***Nature’s Packaging continues this week with Woody Biomass – Part 2***

 

How Does Woody Biomass Produce Energy?

Woody biomass produces energy through several methods:

Combustion

Combustion of biomass is one of the oldest controllable energy resources. Combustion involves burning wood to produce heat.

It is a chemical reaction during which oxygen and biomass combine under high temperatures to produce water vapor, carbon dioxide, and heat.

Combustion is a widely used process to generate electricity that is an efficient, economical, and practical energy source.

Gasification

Gasification involves converting woody biomass into a fuel gas. The combustible gas can then facilitate powering engines. The process of gasification uses a low amount of oxygen and when utilized to convert solid carbonaceous materials, it can also produce hydrogen-rich gas.

Pyrolysis

Pyrolysis is a promising way of generating energy from waste. During pyrolysis, wood is heated without oxygen to produce a liquid or solid fuel.

Biomass pyrolysis involves breaking down organic matter into simpler molecular chains using heat. This process produces not only energy but also fuels and other chemicals.  The fuels created using the fast pyrolysis process have the potential to help reduce vehicle greenhouse gas emissions by a whopping 51% to 96%.

Heating biomass breaks it down into cellulose, lignin, and hemicellulose. These components can be used to produce energy through combustion or other means.

Other Products from Woody Biomass

Woody biomass is a versatile resource that can be utilized to create many different types of products, the following are just a few:

Biochar

We have covered biochar in a previous Nature’s Packaging blog post. Biochar is a form of carbon generated from biomass sources like wood chips, plant residues, and other agricultural waste products. It is created to convert biomass carbon product into a more stable form, otherwise known as carbon sequestration.

Biochar isn’t actually a single product. Instead, biochar is many different forms of black carbon that are unique in chemical and physical composition due to the original feedstock materials, creation process, cooling methods, and overall storage conditions.

Wood Vinegar

Wood vinegar is a liquid byproduct derived from the production of charcoal. It is a liquid generated from the combustion and gas of fresh wood burning in airless conditions. When the gas is cooled, it condenses and the remaining liquid is a vinegar product. Raw wood vinegar contains more than 200 chemicals

Wood vinegar is used to improve soil quality, eliminate pests, and control plant growth. It accelerates the growth of roots, stems, tubers, leaves, flowers, and fruit, but can be very toxic to plants if too much is used in application. Wood vinegar is safe for living matter and organisms in the food chain, especially to insects that help pollinate plants.

Wood-based Polymers and Composites

Recycling wood from end of life utility in packaging, construction debris, and demolition waste then combining those materials with plastics to form wood-polymer composites (WPC) creates strong wood-based products that have very wide usage capabilities. These recycled composites have very low environmental impact in terms of global warming potential (GWP), and greenhouse potential. The versatility of wood-polymer composites allow products to be created that have pre-determined strength values that correspond to their many applications.

Chemical Source Materials

In the past, it was something of a challenge turning woody biomass into fuels or other primary products. The lignin present was difficult to extract. Now through thermodynamic breakdown and chemical science, the lignin can be extracted and is quite good as a bio-polymer additive to adhesive formulas and also can be further processed into binding agents, dispersing agents, and emulsion stabilizers. Meaning that its versatility in multi-functional chemical applications makes it an excellent application in chemical manufacturing processes.

Woody Biomass in the Future

Technological advancements in the forest product sciences are finding more functional uses for woody biomass every year. Starting as a sustainable resource and source of energy that can be replenished over time, it is an environmentally friendly catalyst that is now finding new applications in materials science.

As the need for energy sources grows, woody biomass is complementary to other natural energy sources like wind and solar and ensures energy security for manufacturing and production-based industries. Thus, commercial companies are exploring many different types of bioenergy solutions.

Developing the technology to enhance the economic viability of woody biomass ensures a sustainable future for energy production. Its renewable, carbon-neutral, and lower environmental impact is an ideal attribute for future needs.

 

Wood biomass

Woody Biomass: A Nature’s Packaging Study

Developed countries, such as the U.S, rely on fossil fuels for energy. In fact, a report by the U.S. Energy Information Administration reveals that primary energy consumption for the year 2020 in the U.S. was equivalent to 93 quadrillion btu.

Sources of fossil fuels such as natural gas, petroleum oil, nuclear, and coal play a significant role. They’re meeting the energy demands of the U.S. and the global society. However, these forms of energy contribute to greenhouse gas (GHGs) emissions.

Lowering the use of fossil fuels is vital for environmental sustainability. Fortunately, demand for renewable energy sources has been rising in recent years. This is why renewable energy resources like solar, biomass, wind, geothermal, and hydroelectric are crucial to achieve sustainability goals and mitigate climate change.

Woody biomass is a sustainable source of energy. One of the main benefits of woody biomass is that it is a carbon-neutral fuel source. Using woody biomass can help offset emissions from other fossil fuels. This makes it a crucial part of a sustainable energy strategy.

What is Woody Biomass?

Woody biomass is material obtained from woody plants and has been an important source of energy for millennia. Some notable wood energy facilities are:

  • Commercial wood furnaces
  • Liquid fuel refiners
  • Wood pellet factories
  • Power plants

Woody biomass is a natural renewable energy source from organic materials that can serve as a greener energy source. It is an attractive energy option for homes and industries as it can help generate electricity, produce heat, and be used in the creation of bio-based fuels. These can help reduce greenhouse gas emissions and reliance on fossil fuels.

Where does Woody Biomass come from?

Woody biomass material is derived from several sources. These include urban trees, logging slash and residues, and shrub prunings. Other materials include waste from wood industries and programmed forest thinning operations.

Woody plants are short rotation crops that are fast-growing. These include trees that re-sprout after every harvest. For instance, species such as willow shrubs are often cut back soon (after the first year) to allow multiple stems to grow.

In some cases, growing single stem trees for the first harvest produces woody biomass resources. These trees are then trimmed for more yield. Most wood species, however, re-sprout slowly with every harvest which means that overall yield may decline over time with multiple rotations.

What is Woody Biomass made from?

Woody biomass is organic. It’s made of materials from living organisms (plants and animals) that can be transformed into valuable energy. Common materials for making woody biomass are biomass feedstocks – wood, plants, and waste.

As mentioned above, woody biomass comes from trees and other woody plants such as shrubs. Timber is among the valuable forest products. Woody biomass is one of the tree products, woody debris, and residues. These materials may include:

  • Trees that are lower quality due to disease or growing conditions.
  • Cut residues from timber harvest (barks, small logs, branches, stumps, needles, and limbs).

A tree’s biomass constitutes around 25 to 45 percent of logging residues. These residues are less valuable in terms of forest product utility and they typically do not support the future growth of trees. Removal of this residue material from the forest can help stimulate growth of trees and ecosystems that improve the health of the forest.  These logging residues are collected and recycled into bio-energy products like woody biomass.

In addition to these traditional collection practices, woody biomass can include perennial grasses and agricultural residues. From industrial settings, woody biomass source materials can be derived from municipal solid waste, urban wood waste, and mill residues as well.

Woody Biomass as Renewable Resource

Woody biomass is a sustainable and renewable energy source that can be a viable alternative for fossil fuels.

Through the process of pyrolysis, which breaks down biomass into constituent chemical and organic matter components, woody biomass is utilized in the creation of bio-fuels. The resulting bio-fuels can serve in a variety of applications as a source of energy for both vehicles and facilities

Woody biomass is a renewable resource that can be sustainably managed. Proper management can promote carbon sequestration. It can also be used improve soil health and enhance wildlife habitat.

 

***Join us next week as we continue to learn more about woody biomass at Nature’s Packaging***

© 2022 Nature's Packaging® is federally registered with the U.S. Copyright Office by the National Wooden Pallet & Container Association. All rights reserved.