Sustainable Logging Practices

Sustainable Logging Practices

For some people, the words “sustainable” and “logging” simply do not go together. Historical logging practices were sometimes hard on forests and disrupted native ecosystems. Today, sustainable forestry practices that include logging and harvesting trees comfortably co-exists with the conservation of thriving forests.

Sustainable Logging:  The Beginning

Historical logging practices began with the axe, manual saw, and manpower. They were transformed by the introduction of powered machines. At first, as volumes of timber increased exponentially with these new capabilities, the harvesting practices remained tied to traditional practices for some time. The practice disrupted wildlife, native plant species, and the enjoyment of wild areas.

While clearcutting is still practiced today, it is more controlled and meant to optimize renewal growth.

As environmental and climate awareness began to rise, bitter confrontations with the logging industry became far too common.

In 1972, the U.S. embarked on a new path. With the passage of the Clean Water Act, environmental policies were written into law across the nation. Local, state, and federal regulations emphasized healthy forests and responsible management.

But logging couldn’t simply stop. The industry supplied, and continues to supply, much-needed timber and other forest products to consumers around the world. The harvesting of forest products provided the economic foundation for communities across the country.

Reconciling those competing needs resulted in the birth of sustainable logging practices. Old-style clear-cutting both destroyed forests and ended the economic viability of the land. Sustainable practices allow both to flourish.

Sustainable logging practices benefit everyone, from the employees of logging companies to the campers enjoying a weekend in the woods.

Sustainable forestry even has the potential to help mitigate climate change.

Sustainable Logging Overview

The main principle of sustainable logging is to balance the economic importance of forest products with the ecological importance of healthy forests. This requires a comprehensive strategy for every potential logging site.

One way to approach sustainability is to design harvesting to mirror the effects of nature. Forests are altered by wind, fire, flood, and other natural events. Trees die and are replaced in forests with no human intervention.

Sustainable forestry also depends on choosing harvesting sites wisely. Old growth forests that are not normally harvested commercially should be left alone, preserving ecosystems and habitats that have flourished in place.

For land with a history of logging, sustainable logging begins with foresters learning as much as possible about the natural patterns and existing conditions of each tract of trees.

Sustainable Logging Practices

No two tracts of land will be logged in exactly the same manner. Sustainable logging brings together a team of experts who compile a comprehensive analysis of the area. Biologists, geologists, ecologists, and more lend their expertise to each project.

Each project has its own profile. But similar sustainable logging practices are adapted for sites across the country and, increasingly, around the world.

Patchwork Logging

While a company used to clear-cut an entire forest, sustainable logging is far more targeted and precise.

Harvesting trees from a small area allows the surrounding forest to adapt to the clearing like it would to a natural event. Keeping harvested areas far enough apart maintains habitat and biodiversity.

Tree type and growth, soil conditions, and other factors determine how many trees can be harvested from an individual area. In places where fire or damaging storms are common, the overall environment may be able to regenerate a larger area.

Patchwork logging leaves trees within a harvested area to better mimic natural conditions. It also allows for the preservation of tree species that are endangered or play an oversized role in ecosystem balance.

Sustainable logging is done in cycles. Some models propose that a cycle be no shorter than 80 years. This allows the forest to recover and continuously produce harvestable trees.

Areas that have been harvested are planted with saplings. The emergence of wild grasses attracts wildlife to the clearing, and the ecosystem evolves and grows.

Selective Harvesting

Selective harvesting removes individual trees, thinning the forest to allow existing smaller trees more space and light to grow. This type of sustainable logging is especially beneficial in tropical areas that don’t have natural events that mimic areas of clear-cutting.

Selective harvesting preserves undergrowth. This helps prevent soil erosion and maintain the health of the larger ecosystem.

Both patchwork and selective sustainable logging use fewer and smaller roads and less equipment, reducing damage to the surrounding forest. Careful attention is paid to the protection of unharvested trees.

Other Benefits of Sustainable Logging

Sustainable logging offers additional environmental benefits. Harvested trees and areas are kept well away from waterways to minimize erosion and runoff. Sufficient space is left between harvested areas to provide an uninterrupted habitat for wildlife.

Sustainable logging also provides a safer working environment. Fewer people and less equipment in each area help reduce the chance of accidents.

Sustainable Logging:  Forest Management and Climate Change

Sustainable logging can play a major role in forest management. An unlogged forest is not necessarily a healthy forest. The work that goes into profiling a forest or tract of trees before harvesting provides valuable information.

That information includes soil, geography, and tree health analysis. Invasive species are documented, as are biodiversity, wildlife habitat and density, erosion, and any disease or damage present in the area.

Logging is sometimes the first step in returning a forest to good health. Removing diseased, damaged, or low-quality trees helps the higher quality trees grow. This is called an improvement harvest.

The branches and other wood left behind by this careful removal provides wildlife habitat while it decays and enriches the soil. Removing invasive trees, vines, and other plants provides better conditions for the remaining trees.

Sustainable logging practices are used and adapted by forest managers to improve the overall health of their woodlands, even if no trees are harvested for lumber.

Sustainable forestry is also becoming the focus of climate action. Sustainable logging can result in more trees as well as healthier trees able to capture more carbon.

Tropical forests are an area of particular interest for climate action. 1.5 million square miles of tropical forest are currently being selectively logged. Widespread adoption of selective harvesting practices would allow these forests to maintain much of their carbon stores and biodiversity while continuing to anchor economies.

Sustainable logging practices combine common sense, careful study, and new technologies to improve the health of forests around the world. At the same time, they provide economic stability for many communities and meet the continuing demand for lumber and other forest-based products.

 

Forest Products Marketing Unit

Marketing Forest Products

For over 100 years, the Forest Products Laboratory has been at the forefront of optimized forestry. Their research, which started with the preservation of railroad ties, now spans hundreds of areas.

They develop technologies for wood products to maximize their economic potential. Their research is also key to combating deforestation and climate change while making the most of every harvested tree.

The Forest Products Laboratory does not exist in a vacuum. Its research is meant to be shared and used throughout the industry. Wise and efficient use of forest products results in healthy, sustainable forests and widespread economic opportunity.

Purpose

So why do they need a marketing unit? Marketing for FPL isn’t about advertising or image management. The U.S. Forest Products Marketing Unit (FPMU) is about establishing relationships with public and private entities.

These partnerships allow the research done at the FPL to benefit the forest products industry, the public, and the environment.

Organizing the distribution of information, innovation, and technology to the vast and complex forestry and forest products industries is no small task. But without these efforts, the FPL’s exhaustive research would be widely under-used and its technologies would go largely un-implemented.

The FPMU helps share and assist in the use of beneficial forest product practices across the country. With the help of federal funding, they pursue initiatives to promote smarter, better forest products, and processes.

History

Begun in 1992 and expanded in 1996, a formal relationship was established between the FPL and the forestry industry. To transfer research and technology from the lab to the outside world, the new joint Technology Marketing Unit had an ambitious goal. They would create a national framework that balanced the environmental and economic use of the nation’s forests.

That meant establishing strong cooperative partnerships with state and private industry leaders. The research and development being done at the FPL needed an organized way to reach the entities it could most benefit.

The new unit reached out to other technology marketers and diverse public and private forestry organizations to create a team. This team was dedicated to planning projects, identifying customer needs, and implementing technology to meet those needs.

When the 1996 agreement was written, a primary goal was to administer woody biomass grants. The focus of this program was using wood for energy.

In the years since its formal founding, the FPMU has expanded in scope. Their cooperative projects now include initiatives from nanotechnology to the reduction of the size and rate of forest fires.

Objectives

The FPMU has a set of objectives that cover a lot of ground. They focus on new and existing partnerships, coordination of services, and bringing the experts at the FPL to outside institutions.

For the FPL to have the greatest impact, it needs a strong core of cooperation among a large number of external entities. The FPMU establishes, grows, and maintains that vital core to extend the reach of the FPL.

The overarching objective of the Forest Products Marketing Unit is to provide coordination and assistance on a national level. This collaborative commitment is designed to maximize the economic and environmental use of FPL research and technologies.

Current objectives include incentives for increased use of biomass, accelerating reforestation, market creation, technical assistance, administration of grant programs, and more.

Managing resources nationally is a complex task. Focusing on innovative marketing and technological advances, the FPMU extends opportunities for forest product use and management across urban and rural landscapes.

Governance

The governance of the Forest Product Marketing Unit is a little bit complicated. The national scope and coordination with other entities make program direction and oversight key to its success.

Here’s a top-down look at the basic governing structure:

  • The Forest Products Laboratory Director serves as the overall program director. They provide direction for the FPMU to achieve its yearly goals.
  • Forest Service Deputy Chiefs provide broad oversight of the FPMU. They are also tasked with the important job of approving major planning elements for the FPMU. These elements include the Implementation Plan, the yearly Plan of Work, and the yearly operating budget.
  • FPMU staff includes a program manager, forest products technologist, natural resource specialist, research forest product technologist, research forester, partnership coordinator, IT specialist, and program support. This group is tasked with the day-to-day implementation of projects and programs.

This small but mighty team allows the FPL to work at a national level to guide both efficient economic use of all forest products and conserve and promote healthy forests.

Green Supply Chain Practices

There are multiple ways to implement sustainability practices in a supply chain. Choosing which areas to tackle first can seem complicated. But some common practices cross industries and apply to most companies.

Materials

Choose recycled or sustainably produced materials (like wood pallets). This is one of the most basic applications of the reduce-reuse-recycle framework. Every business can choose green materials at some level.

If shipping products, then choose wood pallets. Wood pallets are less expensive and 95% are reused and recycled. Shipping is already very energy-intensive. You can help reduce its impact with your choice of materials.

Purchasing

Companies make procurement choices every day. Take the time to choose suppliers in your industry that are already using green materials and processes. Try to find suppliers that incorporate sustainable practices already.

Purchasing from an environmentally responsible established supplier strengthens their position in the market and provides an incentive for other suppliers to follow the lead.

Remember hidden costs. You may pay more with a green supplier, but do you save in responsible waste disposal and/or recycling of more materials? Audit the product lifecycle and determine where costs can be re-distributed or eliminated.

Transportation

Transportation is a leading contributor to greenhouse gas emissions. As energy-saving options come on the market, take a closer look at your transportation suppliers. Choose those who are investing in clean-energy options. Just like all other purchasing, balance the cost of choosing greener transportation with the overall benefit to the communities you serve, your reputation, and the stability of your supply chain.

Packaging

Packaging can be one of the largest contributors to product wastefulness. Look at the entire lifespan of your packaging. How much of it ends up in the landfill, and how much of it can be reused or recycled?

Consumers are looking for less packaging. They’re also looking for innovative disposal methods. Can you use compostable packaging? Give your customers an easy choice with clear and visible instructions for environmentally friendly disposal.

First Steps-Greening the Supply Chain

No matter how big the company, the first steps in greening the supply chain is to understand that it is complex endeavor that will require time and resources to be truly effective. A green supply chain is intentional. The strategies come from the top down and involve every part of the chain. Build a plan and tackle each issue comprehensively.

Examine each step, from the acquisition of raw materials to the last mile of delivery. The key is to make incremental changes in daily operations that are part of a larger strategic plan. Identify the weakest points and work to strengthen them.

Talk to suppliers about sustainability practices. Some will have implemented strategies that lend themselves easily to the effort. A company’s vision and plan for sustainability is part of a larger strategic plan and supplier partners that can help by virtue of their own sustainability practices are essential.

A great benefit to investing in the green supply chain is that the effects can be larger than the intended scope of the initial investment. Helping a supplier/partner to improve its sustainability practices can create a stronger, more resilient supply chain overall.

That goodwill becomes a part of your company’s legacy and reflects positively on the reputation in the business community as a good partner.

The goodwill is a small, but essential, step in creating sustainable industries that become the standard.

The pandemic has exposed the fragility of supply chain problems as a worldwide issue. We are also realizing that greening supply chains makes them both more environmentally responsible and more resilient. Taking the first steps in greening the supply chain may seem daunting, but the small steps that a company takes can make a difference.

Every company that invests in sustainable practices, like using recycled wood pallets, is contributing to a greener global business environment. Those contributions will add up collectively to help lower costs and reduce waste.

Examining the company’s environmental footprint might seem troublesome, but seeing it as an opportunity to make positive, eco-friendly changes is good for business.

 

The Value Driven, Green Supply Chain

The whole world is more aware of the supply chain than they have ever been before. Pandemic-induced disruptions brought attention to the complexity of supply chains. Most people didn’t realize the impact of conditions in faraway places on the products they buy.

Climate change brought more attention to the sustainability and environmental impact of supply chains. The combination brought worldwide scrutiny to this historically overlooked essential underpinning of the global economy.

As we face a change in the methodology of supply chain operations and the increasing demand for more sustainable practices, businesses are looking at greening the supply chain. But what exactly does that mean?

Greening the Supply Chain

The phrase, “greening the supply chain”, often refers to practices that reduce the environmental impact of each step in a supply chain. But it can also encompass health and safety, societal impacts, and quality-of-life issues.

The degree to which sustainability programs and practices could be applied in a supply chain were originally thought to be based on the complexity of operations and where astute management could enable a more hands-on approach. However, the reality is that supply chains are a collaborative effort and no one company can lay claim to a singular approach that functions effectively.

The Green Supply Chain

A greener supply chain isn’t only about environmental impact. It’s also about saving resources and money for your business. And it’s about fortifying weak links in the chain to encourage more resilience in the face of external disruption.

Consumers are demanding greater environmental responsibility from corporations. Using sustainable practices at a company headquarters is a beginning step, but suppliers and partners have to be involved and invested in the practice as well. Some industries that work in the supply chain operations are automatically inclined to increase sustainability practices through their business model. The wooden pallet industry is a prime example of an industry that incorporates productive recycling practices that are absolutely in line with sustainability principles.

Many companies fail to realize the financial impact of waste in the supply chain. These costs tend to be hidden compared to upfront savings offered by suppliers. A closer look can reveal numerous processes where cost savings are negated. Disposing of excess packaging, paying for wasted water and energy, and costly shutdowns due to poor conditions can end up costing far more than those initial savings.

Taking the time to audit and eliminate wasteful practices at each step in the supply chain can result in lower costs. More importantly, it can also result in stronger, more resilient processes.

Companies can work directly with suppliers to reduce waste, decrease environmental impact, and improve working conditions. Each of these steps forges stronger relationships between companies and suppliers.

Those relationships allow all parts of the supply chain to work toward the common goal of business having a positive impact on the community. It doesn’t matter if that community is in the United States, Bangladesh, or France. Local impact is global impact.

Complex Supply Chains and Environmental Responsibility

As mentioned previously, a challenge for companies that want to green their supply chain is that they often do not directly control key parts of the chain. Factories and producers in developed countries generally have to abide by environmental regulations.

An effort to work with suppliers to exceed local regulations benefits their workers and their communities. Those suppliers become less fragile and prone to disruption and the supply chain grows stronger.

Those suppliers are also less likely to create environmental damage. Companies that knowingly use suppliers that are harming the environment may find themselves paying for portions of costly cleanup.

This can feel like an impossible task for many businesses. Even multi-national corporations struggle with the complexity of their supply chains. There may be hundreds of steps involved in creating a single product.

Everyone wants to be environmentally responsible, but where do you start? What are some basic green supply chain practices and what are some reasonable first steps?

The 5 Types of Innovative Forest Products – Part 2

Welcome back NP readers! In the first part of our Innovative Forest Product series, we investigated these leading edge technologies in forest product science:

  1. Advanced Composites and how forest products technology like tree fiber and wood waste are being used in processes like furniture construction.
  2. Advanced Structures and how wood products are being used in architecture to lower a buildings carbon footprint and create beautiful design.
  3. Forest Biorefinery and how the biological processes associated with wood can be utilized to create fuels like ethanol and other fermented substances.

Now let’s explore more innovative forest product technologies.

Wood Nanotechnology

Nanotechnology represents a cutting-edge field within the multi-disciplinary spheres of science and technology. Broadly speaking, it refers to the analysis and engineering of matter at the molecular and atomic scales. To put the practice into perspective, a nanometer is equivalent to one billionth of a meter.

How does nanotechnology relate to forestry and wood products? Well, scientists are currently researching and developing wood-related materials and systems that comprise different chemical, physical, and biological properties than materials found on a bigger scale. Researchers at FPL, for example, are conducting studies at the nano-scale to explore concepts like porosity in wood, which is the void space between cellular walls, and how to utilize it to create magnetic properties or electrical conductivity.

Our increasing ability to explore and manipulate materials at such as small scale is exciting for researchers in the engineering and technology sectors. Wood nanomaterials could be added to everything from cement to cloth products to increase their durability and sustainability. In some cases, they could even be used to produce heat-resistant materials. Nanocellulose holds promising potential as an inexpensive substitute for non-renewable petroleum-based materials across virtually all manufacturing sectors.

Woody Biomass Utilization

The western United States has experienced a growing number of intense wildfires in recent years. Part of the reason for this increase relates to the fact that these forest areas contain significant amounts of small-diameter timber and overgrowth that prefers shaded conditions vs sunlight. These overgrowth forests are prone to infestations, disease, and increased risk of wildfires developing through both man-made and natural means.

Is there a solution to this dangerous problem? Much of the forestland in the US is privately owned and management is the responsibility of the landowner. As such, some land is managed through proper silviculture and management techniques. Other forestland is left to grow wild because the management process can be costly and labor intensive.

The FPL has been researching the best ways to use the by-products of this type of forestland and woody biomass utilization may offer a viable sustainable alternative. The FPL is researching how to help small and rural communities utilize the potential of woody biomass to power building heating systems and incorporate the use of small-diameter wood in large structures such as sheds, bridges, trail paths, picnic shelters, and other architecture. The goal being to help these communities find a sustainable and economically viable method to manage forestland.

The bottom line: innovative forest products are changing the world

There are numerous ways for industries and communities to utilize innovative forest and wood by-products. In future, forest product innovations will include even more sustainable processes with the goal of helping companies and communities to become more ecologically aware and have a more positive effect on climate change.

The 5 Types of Innovative Forest Products – Part 1

America’s treasured forests are brimming with resources that help society thrive. As well as offering locals and vacationers a place to hike and unwind, wooded areas provide access to goods, including construction materials, paper, packaging, and lumber for homes and commercial buildings. In some cases, forest products can even be used in medical and dietary supplements, and as fuel for vehicles. Put simply, contemporary lifestyles are infused with forests and their many resources.

Of course, efficient use of forest resources requires us to pay careful attention to issues surrounding sustainability and conservation. The Forest Products Laboratory (FPL) – based in Madison, Wisconsin – is one of several research facilities promoting responsible practices in the forestry industry.

In conjunction with other government agencies and public and private companies, the FPL explores how we can continue producing essential forest products while protecting against wildfires, invasive species, and other issues related to climate change.

In this article, we’ll explore what kinds of products the FPL is currently investigating and how they’re pioneering a science-first approach to forestry. The US Forest Product Labs key areas of research include:

Advanced Composites

Wood composites are materials manufactured using many different forest materials such as tree fibers, wood flakes, wood waste, and natural bio-fibers like corn straw and poultry feathers. Wood composites can help reduce the production of waste materials and enhance the economic efficiency of forest reconstruction projects.

The FPL continues to find new ways of producing composite materials, many of which are utilized in home furnishings and major construction projects. More specifically, advanced composites are often used in interior paneling and the support structures used to erect new buildings. As well as helping to protect forests and reduce waste, composite wood is light, durable, inexpensive, and easy to work with. In future, the FPL hopes to design composites offering even better durability and serviceability.

Advanced Structures

Advanced structures are wood products commonly used in residential homes, commercial buildings, and transport infrastructure. Typically, these products offer strength, cutting-edge design, moisture control, and a range of coatings and finishes.

Lumber has been used as a vital construction material for millennia thanks to its durability and affordability. Excitingly, advanced wood structures can even help tackle climate change thanks to their ability to store carbon and be recylced. As such, wood carries a lower environmental footprint than steel and concrete. Given the clear benefits of lumber, the FPL continues to research ways of boosting its efficiency and sustainability.

Forest Bio-refinery

Wooded areas represent some of the world’s richest sources of biological chemicals and fuels. What’s more, they don’t require pesticides or fertilizer like other sources of biological by-products such as corn and rice. As such, the FPL is committed to researching how to enhance bio-refinery technologies to produce valuable chemicals and fuels for transportation.

Currently, biological products are produced by hydrolyzing wood into sugars. These sugars are then fermented to create ethanol or other fermented substances. The FPL is researching new ways to modify yeast DNA to boost the level of ethanol produced during this process.

In many ways, this research couldn’t come at a better time. As wooded land fills up with overcrowded trees and wooded waste, we’re presented with new opportunities to clean up the forest and satisfy an ever-growing need for alternative fuels. However, harvesting biomass for the production of chemicals and fuels is costly and time-consuming. As such, we must find more cost-effective ways to remove biomass from forests.

Join Nature’s Packaging next week as we reveal the last two forest product innovation types.

Carbon Sequestration

What is Carbon Sequestration?

Carbon sequestration is the process of capturing carbon and storing it in a way that won’t contribute to climate change.

If you’re familiar with the concept of a carbon footprint, then you are off to a great start. A carbon footprint measures how much greenhouse gas (GHG) emissions are due to activities like driving a vehicle or using electricity to run facilities and machinery.

Greenhouse gases trap heat in our atmosphere and contribute to global warming. They’re “greenhouse gases” because they work like the glass of a greenhouse: they let sunlight in but don’t allow the heat that is generated to escape back outside the atmosphere of the Earth into space. The result is that global temperatures rise, and weather patterns become more severe and less predictable.

Carbon dioxide and methane are two common greenhouse gases  that are produced by activities like burning fossil fuels or managing livestock.

But nature has developed an excellent resource to help pull carbon out of the environment.

The wonderful tree.

As trees mature, they absorb sunlight through photosynthesis and store carbon in the form of carbohydrates, which are used by the tree for growth. This carbon capture process occurs within all plants to convert sunlight into chemical energy. Trees are especially good at it because they typically have an extensive root and leaf structure.

If the tree is harvested to become a forest product like lumber, it retains that carbon—meaning that wood products act as “sinks” for carbon dioxide in the atmosphere. In other words, using wood helps remove carbon from the atmosphere—which can help mitigate climate change.

Wood:  A Carbon Storage Powerhouse

A tree’s roots, trunk, branches, leaves, and sap all contain carbon, and while they’re growing, they take up even more carbon dioxide.

The amount of carbon stored in any particular tree varies with its size and age, the type of wood it produces (hardwood or softwood), and how dense the wood is. You can determine the density by measuring how much space an oven-dry wood sample occupies.

The ability to store carbon in plant biomass, such as trees, makes possible the creation of a sustainable energy source.

The process of carbon sequestration involves three main steps:

  1. Capturing CO2 from the atmosphere
  2. Transporting it to underground storage.
  3. Storing the captured CO2

The quantity of carbon sequestered will depend on various factors, including climate, geography, and land management practices.

For centuries, humanity has relied on forests and wood for a multitude of products. Today, industries harvest and utilize trees for everything from construction materials to cosmetics.

However, it turns out that forest products are capable of continuing their carbon sequestration process. Instead of releasing carbon back into the atmosphere through decomposition, wood products can store carbon within their cellular structure, keeping it out of the atmosphere. It means wood products are a great source of renewable energy!

As a renewable resource, wood is a vital component of the circular economy. Wood products store carbon throughout their life cycle and can help mitigate greenhouse gas emissions.

Wood is very often one of the few materials that is produced and utilized within the same geographic region. It results in a low carbon footprint compared to many other materials (e.g., concrete, steel, plastic).

Reduce > Re-use > Recycle > Renew

Encouraging the use of wood products that sequester carbon is a small part of the larger positive impact on the environment and climate change. Another step to this equation is to Reduce-Reuse-Recycle whenever possible.

Wood is a renewable resource. Responsibly managed forests help in the fight against climate change by absorbing CO2 from the atmosphere on a global scale. And they do it at an astonishing rate. A single hardwood tree can absorb up to 48 pounds of carbon dioxide per year, and one acre of forest can absorb twice as much CO2 as an acre of farmland.

When you purchase products like wood pallets to use in your supply chain, you support an industry that uses a renewable resource and recycles that resource millions of times a day, every day.

 

Happy Arbor Day

This is Arbor Day!

If there’s one day of the year that the forests of the world are thankful for, it would probably be Arbor Day. The word arbor comes from the Latin for “tree,” and on this day, communities throughout the world come together to celebrate trees and plant them together.

They provide oxygen, a home for animals and birds, carbon dioxide control, shade from the sun, windbreaks for shelter from storms, erosion control during rainstorms, and even a way to mark the seasons.

They provide shade in the hot summer months and keep our houses warm during winter. They give us food with their fruit or nuts, and we can use the extracts we make from them in medicines.

What is Arbor Day?

Arbor Day is a special day to celebrate trees and all they do for us and our planet. On this day, communities come together to plant trees and recognize their importance to our ecosystem and physical health.

We celebrate it on the last Friday in April. This year has a special significance because it is the 150th anniversary of the first Arbor Day and the 50th anniversary of the Arbor Day Foundation.

What is the History of Arbor Day?

Arbor Day was first celebrated on April 10th, 1872, by J. Sterling Morton, the Secretary of Agriculture under President Grover Cleveland.

Morton proposed the day as a way to encourage people to plant trees. The day was an incredible success, with an estimated 1 million trees planted by school children and community members.

Since that time, Arbor Day has become an annual tradition in many countries around the world.

Today, people celebrate Arbor Day by planting trees in their communities, participating in conservation activities like forest clean-ups, and learning about the benefits of trees for people and the planet.

The Arbor Day Foundation

The Arbor Day Foundation is a nonprofit conservation and education organization with the mission to promote the planting and stewardship of trees. The foundation was started in 1972 by John Rosenow, inspired by the success of the first Arbor Day 100 years before.

The foundation provides resources and support for communities to plan and carry out their own tree-planting activities. They also offer educational materials about trees, their benefits, and how to plant and care for them.

In the years since its founding, the Arbor Day Foundation has become a global leader in environmental conservation.

Arbor Day Foundation Programs and Projects

The Arbor Day Foundation carries out projects locally and globally to work towards its mission of planting trees to tackle some of the most significant issues the planet faces today.

At a local level, the foundation supports community-based tree planting activities, forest conservation efforts, and educational initiatives.

Some of their projects include a community forestry program under the name of Tree City USA, which honors towns committed to planting and nurturing trees, the Building With Trees program in which they partner with builders and developers, and Tree Line USA, a recognition program for utilities.

At a global level, the foundation promotes reforestation efforts, particularly in areas that have been impacted by deforestation. The Rain Forest Rescue program supports local partners and communities in their stewardship of the vital tropical rain forest ecosystems.

Arbor Day Foundation Fast Facts

Here are some key figures for more background on The Arbor Day Foundation and their work:

  • It was created in 1972 to celebrate the 100th anniversary of the first Arbor Day.
  • It is one of the world’s largest nonprofit conservation organizations dedicated to planting trees.
  • There are nearly 1 million members of the Arbor Day Foundation.
  • It works with the U.S. Forest Service and the National Association of State Foresters to plant trees in national and state forests.
  • It recognizes more than 3,400 communities through the Tree City USA program.
  • It has distributed over 4.5 million trees to members to plant.
  • The foundation has also planted over 8 million trees in US forests and over 2 million trees in rain forests.

The Arbor Day Foundation is also an excellent resource for learning about trees and information about how to plant and care for them. Their website has many fun and user-friendly educational tools to help any budding arborist up their tree skills.

Here are a few of the tools they offer:

  • Hardiness zone lookup. This tool allows you to find out what zones are best suited for different types of trees based on factors like temperature and rainfall.
  • Tree identifier. This interactive tool helps you identify different types of trees based on the characteristics and features of their leaves. It also provides information about how to care for every kind of tree.
  • Tree planting and care guide. This guide provides step-by-step instructions on how to plant and care for trees through all the different stages of their life cycle. It also provides tips on more specific situations, such as how to save trees that have been damaged after a storm or plant trees to stop soil erosion and conserve soil and water.

Whether you are a professional arborist or just someone looking to learn more about trees, the Arbor Day Foundation has tools and resources you can use to explore your passion for these essential and beautiful plants.

This Arbor Day, take some time to celebrate the trees in your life and plant a new one!

It’s also a perfect opportunity to get involved with the Arbor Day Foundation by planting trees, supporting their conservation efforts, or simply learning more about these amazing plants.

No matter how you choose to celebrate Arbor Day, remember that every bit helps when it comes to ensuring a healthy future for our planet.

What is Earth Day?

Friday, April 22, 2022, marks this year’s Earth Day, an annual day of action to tackle the ongoing climate crisis, promote sustainability, and demonstrate support for those working to protect the planet. Inaugurated in 1970, the event continues to grow in line with the scale of the ongoing ecological threat, with events taking place in over 190 countries.

Origin of Earth Day

Earth Day started in 1969 as an initiative to raise awareness of the deteriorating health of the environment on US college campuses. In response to concerns surrounding air and water quality in the country, Wisconsin’s Senator Gaylord Nelson announced to the national media that he would be organizing teach-ins on college campuses, recruiting young activist Denis Hayes to lead the sessions.

Following a series of successful events, Hayes built a team of 85 people to promote public teach-ins across the US. Soon, a wide array of organizations and faith groups became involved. In 1970, the first nationwide Earth Day took place, with millions of Americans taking to the streets to demonstrate against the harmful effects of industrial development.

Following a successful day of action, Congress created the US Environmental Protection Agency and passed several laws designed to mitigate ecological damage, including the Occupational Safety and Health Act and the Clean Air Act.

Earth Day Milestones

Earth Day has grown in size and strength since its successful launch in 1970. In 1990, Earth Day spread throughout the world, mobilizing millions of people and emphasizing the urgency of environmental action. It also lay the foundations for the UN Earth Summit in Rio de Janeiro in 1992.

By the time the millennium came around, Earth Day had spread to 184 countries and inspired hundreds of thousands of people to gather in Washington, DC, to express the need for decisive action on global warming.

Earth Day 2022

Today, Earth Day represents a global movement. Thanks to the widespread availability of the internet, billions of people engage with Earth Day every year. This year’s theme is “Invest in our Planet”, a slogan designed to encourage individuals, corporations, and world leaders to put money towards greener technologies and environmental projects that promote bio-diversity across the globe.

What’s New on Earth Day?

Businesses and individuals are making pledges to “Invest in our Planet” by switching to greener ways of working and reducing their carbon footprints. The Earth Day 2022 website includes an action toolkit to help people get involved with the event and make a difference in their local communities, as well as tips for investing in the planet.

As the movement’s website states, “For us, every day is Earth Day”, so actions and events will continue throughout the year to ensure environmental action does not lose its vital momentum.

Forest Products: Science and Sustainability

America’s treasured forests are brimming with resources that help society thrive. As well as offering locals and vacationers a place to hike and unwind, wooded areas provide access to goods, including construction materials, paper, packaging, and lumber for homes and commercial buildings. In some cases, forest products can even be used in medical and dietary supplements, and as fuel for vehicles. Put simply, contemporary lifestyles are utterly dependent on forests and their many resources.

Of course, efficient use of forest resources requires us to pay careful attention to issues surrounding sustainability and conservation. The Forest Products Laboratory (FPL) – based in Madison, Wisconsin – is one of several research facilities promoting responsible practices in the forestry industry.

In conjunction with other government agencies and public and private companies, the FPL explores how we can continue producing essential forest products while protecting against wildfires, invasive species, and other issues related to climate change.

In this article, we’ll explore what kinds of products the FPL is currently investigating and how they’re pioneering a science-first approach to forestry. Key areas of research include:

Advanced Composites

Wood composites are materials manufactured using many different forest materials such as tree fibers, wood flakes, wood waste, and natural bio-fibers like corn straw and poultry feathers. Wood composites can help reduce the production of waste materials and enhance the economic efficiency of forest reconstruction projects.

The FPL continues to find new ways of producing composite materials, many of which are utilized in home furnishings and major construction projects. More specifically, advanced composites are often used in interior paneling and the support structures used to erect new buildings. As well as helping to protect forests and reduce waste, composite wood is light, durable, inexpensive, and easy to work with. In future, the FPL hopes to design composites offering even better durability and serviceability.

Advanced Structures

Advanced structures are wood products commonly used in residential homes, commercial buildings, and transport infrastructure. Typically, these products offer strength, cutting-edge design, moisture control, and a range of coatings and finishes.

Lumber has been used as a vital construction material for millennia thanks to its durability and affordability. Excitingly, advanced wood structures can even help tackle climate change thanks to their recyclable nature and ability to store carbon. As such, wood carries a lower environmental footprint than steel and concrete. Given the clear benefits of lumber, the FPL continues to research ways of boosting its efficiency and sustainability.

Forest Biorefinery

Wooded areas represent some of the world’s richest sources of biological chemicals and fuels. What’s more, they don’t require pesticides or fertilizer like other sources of biological by-products such as corn and rice. As such, the FPL is committed to researching how to enhance bio-refinery technologies to produce valuable chemicals and fuels for transportation.

Currently, biological products are produced by hydrolyzing wood into sugars. These sugars are then fermented to create ethanol or other fermented substances. The FPL is researching new ways to modify yeast DNA to boost the level of ethanol produced during this process.

In many ways, this research couldn’t come at a better time. As wooded land fills up with overcrowded trees and wooded waste, we’re presented with new opportunities to clean up the forest and satisfy an ever-growing need for alternative fuels. However, harvesting biomass for the production of chemicals and fuels is costly and time-consuming. As such, we must find more cost-effective ways to remove biomass from forests.

Nanotechnology

Nanotechnology represents a cutting-edge field within the multi-disciplinary spheres of science and technology. Broadly speaking, it refers to the analysis and engineering of matter at the molecular and atomic scales. To put the practice into perspective, a nano-meter is equivalent to one billionth of a meter.

So, how does nanotechnology relate to forestry and wood products? Well, scientists are currently researching and developing wood-related materials and systems that comprise different chemical, physical, and biological properties than materials found on a bigger scale. Researchers at FPL, for example, are conducting studies at the nano-scale to explore under-explored components of wood.

Our increasing ability to explore and manipulate materials at such as small scale is exciting for researchers in the engineering and technology sectors. Nano-materials could be added to everything from cement to cloth products to increase their durability and sustainability. In some cases, they could even be used to produce heat-resistant materials. More specifically, nano-cellulose holds promising potential as an inexpensive substitute for non-renewable materials across virtually all manufacturing sectors.

Woody Biomass

An alarming trend in recent years, the US has experienced a growing number of intense wildfires in recent years. Part of the reason for this increase relates to the fact that US forests contain significant levels of underutilized and small-diameter wooded materials. Such overcrowded forests raise the risk of fires developing. What’s more, they’re prone to infestations and disease.

What’s the solution to this dangerous problem? Traditionally, forests have been thinned out to reduce the risk of fire and keep forests healthy. However, this process is relatively costly and could exceed the value of the forest products collected during removal.

As such, the FPL has been researching the best ways to use the by-products of thinning, helping local communities threatened by wildfires make the most of woody biomass. Currently, the FPL is looking at the potential use of small-diameter wood in large structures such as sheds, bridges, trail paths, picnic shelters, and other buildings that may benefit from a rustic look.

Forest Products = Positive Change

There are plenty of innovative ways for communities and businesses to utilize wood and forest by-products. In future, the industry is likely to shift toward even more sustainable processes, with the goal of helping companies and communities become more ecologically aware and have a more positive effect on climate change.

 

© 2022 Nature's Packaging® is federally registered with the U.S. Copyright Office by the National Wooden Pallet & Container Association. All rights reserved.