Tag Archive for: forest products lab

Forest Products: Science and Sustainability

America’s treasured forests are brimming with resources that help society thrive. As well as offering locals and vacationers a place to hike and unwind, wooded areas provide access to goods, including construction materials, paper, packaging, and lumber for homes and commercial buildings. In some cases, forest products can even be used in medical and dietary supplements, and as fuel for vehicles. Put simply, contemporary lifestyles are utterly dependent on forests and their many resources.

Of course, efficient use of forest resources requires us to pay careful attention to issues surrounding sustainability and conservation. The Forest Products Laboratory (FPL) – based in Madison, Wisconsin – is one of several research facilities promoting responsible practices in the forestry industry.

In conjunction with other government agencies and public and private companies, the FPL explores how we can continue producing essential forest products while protecting against wildfires, invasive species, and other issues related to climate change.

In this article, we’ll explore what kinds of products the FPL is currently investigating and how they’re pioneering a science-first approach to forestry. Key areas of research include:

Advanced Composites

Wood composites are materials manufactured using many different forest materials such as tree fibers, wood flakes, wood waste, and natural bio-fibers like corn straw and poultry feathers. Wood composites can help reduce the production of waste materials and enhance the economic efficiency of forest reconstruction projects.

The FPL continues to find new ways of producing composite materials, many of which are utilized in home furnishings and major construction projects. More specifically, advanced composites are often used in interior paneling and the support structures used to erect new buildings. As well as helping to protect forests and reduce waste, composite wood is light, durable, inexpensive, and easy to work with. In future, the FPL hopes to design composites offering even better durability and serviceability.

Advanced Structures

Advanced structures are wood products commonly used in residential homes, commercial buildings, and transport infrastructure. Typically, these products offer strength, cutting-edge design, moisture control, and a range of coatings and finishes.

Lumber has been used as a vital construction material for millennia thanks to its durability and affordability. Excitingly, advanced wood structures can even help tackle climate change thanks to their recyclable nature and ability to store carbon. As such, wood carries a lower environmental footprint than steel and concrete. Given the clear benefits of lumber, the FPL continues to research ways of boosting its efficiency and sustainability.

Forest Biorefinery

Wooded areas represent some of the world’s richest sources of biological chemicals and fuels. What’s more, they don’t require pesticides or fertilizer like other sources of biological by-products such as corn and rice. As such, the FPL is committed to researching how to enhance bio-refinery technologies to produce valuable chemicals and fuels for transportation.

Currently, biological products are produced by hydrolyzing wood into sugars. These sugars are then fermented to create ethanol or other fermented substances. The FPL is researching new ways to modify yeast DNA to boost the level of ethanol produced during this process.

In many ways, this research couldn’t come at a better time. As wooded land fills up with overcrowded trees and wooded waste, we’re presented with new opportunities to clean up the forest and satisfy an ever-growing need for alternative fuels. However, harvesting biomass for the production of chemicals and fuels is costly and time-consuming. As such, we must find more cost-effective ways to remove biomass from forests.

Nanotechnology

Nanotechnology represents a cutting-edge field within the multi-disciplinary spheres of science and technology. Broadly speaking, it refers to the analysis and engineering of matter at the molecular and atomic scales. To put the practice into perspective, a nano-meter is equivalent to one billionth of a meter.

So, how does nanotechnology relate to forestry and wood products? Well, scientists are currently researching and developing wood-related materials and systems that comprise different chemical, physical, and biological properties than materials found on a bigger scale. Researchers at FPL, for example, are conducting studies at the nano-scale to explore under-explored components of wood.

Our increasing ability to explore and manipulate materials at such as small scale is exciting for researchers in the engineering and technology sectors. Nano-materials could be added to everything from cement to cloth products to increase their durability and sustainability. In some cases, they could even be used to produce heat-resistant materials. More specifically, nano-cellulose holds promising potential as an inexpensive substitute for non-renewable materials across virtually all manufacturing sectors.

Woody Biomass

An alarming trend in recent years, the US has experienced a growing number of intense wildfires in recent years. Part of the reason for this increase relates to the fact that US forests contain significant levels of underutilized and small-diameter wooded materials. Such overcrowded forests raise the risk of fires developing. What’s more, they’re prone to infestations and disease.

What’s the solution to this dangerous problem? Traditionally, forests have been thinned out to reduce the risk of fire and keep forests healthy. However, this process is relatively costly and could exceed the value of the forest products collected during removal.

As such, the FPL has been researching the best ways to use the by-products of thinning, helping local communities threatened by wildfires make the most of woody biomass. Currently, the FPL is looking at the potential use of small-diameter wood in large structures such as sheds, bridges, trail paths, picnic shelters, and other buildings that may benefit from a rustic look.

Forest Products = Positive Change

There are plenty of innovative ways for communities and businesses to utilize wood and forest by-products. In future, the industry is likely to shift toward even more sustainable processes, with the goal of helping companies and communities become more ecologically aware and have a more positive effect on climate change.

 

Transparent wood product

Windows to Wearables: Innovation in Wood Products

https://www.usda.gov/media/blog/2020/10/01/transparent-wood-could-be-window-future

While wood products have been used by humanity for millennia, researchers are recently finding new and exciting ways that the material can be used to promote sustainability. The forest products sector welcomes these exciting new opportunities for wood products, particularly for its woody residuals such as sawdust, bark, and chips. Woody residuals are generated from tree harvest tops and branches, woodlot thinnings, low-grade logs, sawmill activities, and the chipping of recycled wood, including end-of-life pallet material.

Woody residuals are used for various purposes, including mulch, soil amendments, playground surface material, boiler fuel, pellets, as well as fiber for pulp and structural panels such as OSB. Demand in many market segments is healthy. In some cases, in fact, it is booming! COVID-19 helped provide a “turbo boost” for wood residual products associated with consumers such aslandscaping mulch and home heating pellets as people have been spending more time at home and investing in home improvement projects.

Other market segments can be more fickle. One of the key challenges faced by wood product producers is that wood fiber is not economically feasible to ship great distances due to its low value. A common rule of thumb is that wood chips and sawdust are not profitable to ship more than 100 miles.

For this reason, wood fiber markets tend to be highly localized, depending upon the local demand for fiber products. If wood producers in an area are dependent upon a large local consumer of residuals such as a pulp and paper plant, and the local source is lost, it can leave businesses scrambling to find an outlet.

One particular challenge has been the closure of pulp and paper plants. In the case of the newsprint market, we are witnessing a decline in demand as people increasingly embrace digital media. In 2019, the global demand fornewsprint plunged 13% from the previous year. In 2020, thedemand for newsprint in Europe dropped by a whopping 20.5%.

Given the significance of that decline, it will be important for the forest sector to identify new markets for its woody residuals. One area of active research and investment is in bioproducts, a fast-growing category of products that include biochemicals, biomaterials, and bioenergy.

Wood Insulation for Buildings

Wood fiber home insulation is a $700 million market in Europe, supported by 15 production plants and offering insulation products with a much lower carbon footprint than alternatives. While the product line has a proven track record in Europe dating back over 15 years, it has not been produced in the U.S. That situation is about to change, with a new wood fiber insulation plant scheduled to begin production in 2022.

Equipment for the new Maine production plant has arrived from Germany. The facility, which will support up to 130 employees when at full production, is utilizing a shuttered pulp and paper plant. It will use woody residuals as feedstock, providing a valuable market for that material.

The plant will produce three products, including insulated board, batt, and loose-fill wood fiber. According to the manufacturer, the carbon footprint of the wood insulated board is four times better than that of foam plastic boards and seven times better than mineral wool board, its main competitors. For batt, the carbon footprint is five times better than fiberglass and seven times better than mineral wool. Other beneficial features of note are that the products don’t trap moisture, and they can be recycled without specialized equipment. They are also non-toxic and biodegradable.

Wood Fiber Clothing

A company based in Finland has been developing more sustainable alternatives to fiber materials such as cotton and rayon that rely on the use of chemicals in processing, which in turn can lead to water pollution and employee health issues.

The company’s production process turns wood material, including biomass, into a material called micro fibrillated cellulose, which in turn can be manufactured into eco-friendly clothing. The only production byproduct is evaporated water, and its process consumes a much smaller amount than would be required for cotton production. The company recently entered a 50-50 joint venture to build a $61 million plant to produce clothing fabric from wood pulp, scheduled to open in 2022.

Transparent Wood

Glass is commonly used for windows, but experts note that it comes at a significant economic and environmental cost. Regulating building temperatures accounts for 14% of primary energy consumption in the U.S., and one-quarter of this energy is lost through inefficient glass windows in cold weather.

Transparent wood windows, on the other hand, boast a thermal conductivity more than five times lower than glass, and toughness three times greater than glass. Earlier attempts to make transparent wood involved removing lignin through the use of toxic chemicals and high temperature, but it was an expensive product and the resulting product was brittle.

Researchers have developed a new cheap and effective method to produce transparent wood, however. A thin veneer of rotary cut wood can be treated with a solution of hydrogen peroxide, and after an hour in the sun or under a UV lamp, the peroxide bleaches out the color but leaving the lignin intact and the wood turned transparent. While this technology has yet to commercialized, the researchers feel it holds great potential as a new building material.

Research continues in the development of cellulose-based innovations that provide a lower carbon footprint than existing products, without compromising performance. Some of these products offer the potential to better utilize woody residuals while underscoring the importance of our forest resource.

© 2024 Nature's Packaging® is federally registered with the U.S. Copyright Office by the National Wooden Pallet & Container Association. All rights reserved.