The 5 Types of Innovative Forest Products – Part 2
Welcome back NP readers! In the first part of our Innovative Forest Product series, we investigated these leading edge technologies in forest product science:
- Advanced Composites and how forest products technology like tree fiber and wood waste are being used in processes like furniture construction.
- Advanced Structures and how wood products are being used in architecture to lower a buildings carbon footprint and create beautiful design.
- Forest Biorefinery and how the biological processes associated with wood can be utilized to create fuels like ethanol and other fermented substances.
Now let’s explore more innovative forest product technologies.
Wood Nanotechnology
Nanotechnology represents a cutting-edge field within the multi-disciplinary spheres of science and technology. Broadly speaking, it refers to the analysis and engineering of matter at the molecular and atomic scales. To put the practice into perspective, a nanometer is equivalent to one billionth of a meter.
How does nanotechnology relate to forestry and wood products? Well, scientists are currently researching and developing wood-related materials and systems that comprise different chemical, physical, and biological properties than materials found on a bigger scale. Researchers at FPL, for example, are conducting studies at the nano-scale to explore concepts like porosity in wood, which is the void space between cellular walls, and how to utilize it to create magnetic properties or electrical conductivity.
Our increasing ability to explore and manipulate materials at such as small scale is exciting for researchers in the engineering and technology sectors. Wood nanomaterials could be added to everything from cement to cloth products to increase their durability and sustainability. In some cases, they could even be used to produce heat-resistant materials. Nanocellulose holds promising potential as an inexpensive substitute for non-renewable petroleum-based materials across virtually all manufacturing sectors.
Woody Biomass Utilization
The western United States has experienced a growing number of intense wildfires in recent years. Part of the reason for this increase relates to the fact that these forest areas contain significant amounts of small-diameter timber and overgrowth that prefers shaded conditions vs sunlight. These overgrowth forests are prone to infestations, disease, and increased risk of wildfires developing through both man-made and natural means.
Is there a solution to this dangerous problem? Much of the forestland in the US is privately owned and management is the responsibility of the landowner. As such, some land is managed through proper silviculture and management techniques. Other forestland is left to grow wild because the management process can be costly and labor intensive.
The FPL has been researching the best ways to use the by-products of this type of forestland and woody biomass utilization may offer a viable sustainable alternative. The FPL is researching how to help small and rural communities utilize the potential of woody biomass to power building heating systems and incorporate the use of small-diameter wood in large structures such as sheds, bridges, trail paths, picnic shelters, and other architecture. The goal being to help these communities find a sustainable and economically viable method to manage forestland.
The bottom line: innovative forest products are changing the world
There are numerous ways for industries and communities to utilize innovative forest and wood by-products. In future, forest product innovations will include even more sustainable processes with the goal of helping companies and communities to become more ecologically aware and have a more positive effect on climate change.